Giải SGK Toán 8 KNTT Luyện tập chung trang 73 có đáp án
39 người thi tuần này 4.6 803 lượt thi 6 câu hỏi
🔥 Đề thi HOT:
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Đề cuối kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án- Đề 1
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

a) Tứ giác AMCP có hai đường chéo AC và MP cắt nhau tại trung điểm N của mỗi đường.
Do đó tứ giác AMCP là hình bình hành.
Lời giải
b) Xét ∆MAN và ∆PCN có:
AN = NC (vì N là trung điểm của AC)
(hai góc đối đỉnh)
MN = NP (vì N là trung điểm MP)
Do đó ∆MAN = ∆PCN (c.g.c).
Suy ra (hai góc tương ứng).
Mà hai góc này ở vị trí so le trong nên suy ra AM // CP nên BM // CP.
Mặt khác, ∆MAN = ∆PCN suy ra AM = CP (hai cạnh tương ứng)
Mà AM = BM (vì M là trung điểm của AB) nên BM = CP.
Tứ giác BMPC có BM // CP và BM = CP nên tứ giác BMCP là hình bình hành.
• Để hình bình hành AMCP là hình chữ nhật thì AC = MP.
Mà BC = MP (vì tứ giác BMCP là hình bình hành).
Do đó AC = BC nên tam giác ABC là tam giác cân tại C.
Vây để hình bình hành AMCP là hình chữ nhật thì tam giác ABC là tam giác cân tại C.
• Để hình bình hành AMCP là hình thoi thì AM = CM hay AM = CM = BM = .
Tam giác ABC có CM là đường trung tuyến ứng với cạnh AB của tam giác ABC.
Mà AM = CM = BM = .
Khi đó tam giác ABC vuông tại C.
Vậy để hình bình hành AMCP là hình thoi thì tam giác ABC vuông tại C.
• Để hình bình hành AMCP là hình vuông thì hình bình hành AMCP là hình chữ nhật có AM = CM.
Do đó, tam giác ABC cân tại C có AM = CM.
Khi đó, tam giác ABC vuông cân tại C.
Vậy để hình bình hành AMCP là hình vuông thì tam giác ABC vuông cân tại C.
Lời giải

Vì tứ giác ABCD là hình bình hành nên AB // CD hay AM // DN.
Suy ra (hai góc so le trong)
Mà (vì DM là tia phân giác ).
Do đó nên tam giác ADM cân tại A.
Chứng minh tương tự, ta có tam giác BCN cân tại C.
Vì (vì DM, BN lần lượt là tia phân giác của ).
Mà (vì tứ giác ABCD là hình bình hành).
Do đó .
Tam giác ADM cân tại A, tam giác BCN cân tại C.
Mà nên suy ra .
Tứ giác BMDN có nên tứ giác BMDN là hình bình hành.
Suy ra DM // BN hay HE // GF.
Tam giác ADM cân tại A có AH là đường phân giác nên AH cũng là đường cao.
Suy ra nên .
Mà HE // GF suy ra (hai góc đồng vị).
Tương tự, ta cũng chứng minh được: .
Tứ giác EFGH có .
Do đó tứ giác EFGH là hình chữ nhật.
Lời giải
Khi khung tre bị xô lệch, các góc không còn vuông nữa nhưng các cạnh đối vẫn song song với nhau.
Do đó, sau khi khung tre này bị xô lệch thì tứ giác tạo thành là hình bình hành.
Khi nẹp thêm một đường chéo vào khung thì hai đường chéo của hai đỉnh đối diện được giữ cố định nên các đỉnh trong hình trên không bị giữ xô lệch.
Lời giải

Vì Ou, Ov lần lượt là tia phân giác của nên .
Mà (vì là hai góc kề bù).
Hay
Suy ra .
Do đó hay suy ra hay .
Vì B và C là chân đường vuông góc hạ từ A lần lượt xuống đường thẳng chứa Ou và Ov
Nên .
Tứ giác OBAC có
Suy ra .
Xét tứ giác OBAC có .
Vậy tứ giác OBAC là hình chữ nhật.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
161 Đánh giá
50%
40%
0%
0%
0%