Luyện tập trang 56-57
27 người thi tuần này 4.6 35.8 K lượt thi 18 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
9x4 – 10x2 + 1 = 0 (1)
Đặt x2 = t, điều kiện t ≥ 0.
Khi đó (1) trở thành : 9t2 – 10t + 1 = 0 (2)
Giải (2):
Có a = 9 ; b = -10 ; c = 1
⇒ a + b + c = 0
⇒ Phương trình (2) có nghiệm t1 = 1; t2 = c/a = 1/9.
Cả hai nghiệm đều thỏa mãn điều kiện.
+ Với t = 1 ⇒ x2 = 1 ⇒ x = 1 hoặc x = -1.
Vậy phương trình (1) có tập nghiệm
Lời giải
5x4 + 2x2 – 16 = 10 – x2
⇔ 5x4 + 2x2 – 16 – 10 + x2 = 0
⇔ 5x4 + 3x2 – 26 = 0 (1)
Đặt x2 = t, điều kiện t ≥ 0.
Khi đó (1) trở thành : 5t2 + 3t – 26 = 0 (2)
Giải (2) :
Có a = 5 ; b = 3 ; c = -26
⇒ Δ = 32 – 4.5.(-26) = 529 > 0
⇒ Phương trình có hai nghiệm phân biệt
Đối chiếu điều kiện chỉ có t1 = 2 thỏa mãn
+ Với t = 2 ⇒ x2 = 2 ⇒ x = √2 hoặc x = -√2.
Vậy phương trình (1) có tập nghiệm S = {-√2; √2}
Lời giải
0,3x4 + 1,8x2 + 1,5 = 0 (1)
Đặt x2 = t, điều kiện t ≥ 0.
Khi đó, (1) trở thành : 0,3t2 + 1,8t + 1,5 = 0 (2)
Giải (2) :
có a = 0,3 ; b = 1,8 ; c = 1,5
⇒ a – b + c = 0
⇒ Phương trình có hai nghiệm t1 = -1 và t2 = -c/a = -5.
Cả hai nghiệm đều không thỏa mãn điều kiện.
Vậy phương trình (1) vô nghiệm.
Lời giải
Điều kiện xác định: x ≠ 0.
Quy đồng, khử mẫu ta được :
2x4 + x2 = 1 – 4x2
⇔ 2x4 + x2 + 4x2 – 1 = 0
⇔ 2x4 + 5x2 – 1 = 0 (1)
Đặt t = x2, điều kiện t > 0.
Khi đó (1) trở thành : 2t2 + 5t – 1 = 0 (2)
Giải (2) :
Có a = 2 ; b = 5 ; c = -1
⇒ Δ = 52 – 4.2.(-1) = 33 > 0
⇒ Phương trình có hai nghiệm phân biệt:
Đối chiếu với điều kiện thấy có nghiệm t1 thỏa mãn.
Vậy phương trình có tập nghiệm
Lời giải
(x – 3)2 + (x + 4)2 = 23 – 3x
⇔ x2 – 6x + 9 + x2 + 8x + 16 = 23 – 3x
⇔ x2 – 6x + 9 + x2 + 8x + 16 + 3x – 23 = 0
⇔ 2x2 + 5x + 2 = 0
Có a = 2; b = 5; c = 2 ⇒ Δ = 52 – 4.2.2 = 9 > 0
⇒ Phương trình có hai nghiệm:
Vậy phương trình có tập nghiệm
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
7163 Đánh giá
50%
40%
0%
0%
0%