Giải SBT Toán 7 Bài 28. Phép chia đa thức một biến có đáp án
55 người thi tuần này 4.6 1.1 K lượt thi 15 câu hỏi
🔥 Đề thi HOT:
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 01
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 3
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 4
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đa thức đã cho chia hết cho xn nếu từng hạng tử của nó chia hết cho xn, nói riêng là 3,7x2 chia hết cho xn. Điều này xảy ra khi n ≤ 2.
Mà n là số tự nhiên nên n {0; 1; 2}.
Vậy n {0; 1; 2} thỏa mãn yêu cầu bài toán.
Lời giải
a) (−4x5 + 3x3 − 2x2) : (−2x2)
= (−4x5) : (−2x2) + (3x3) : (−2x2)+ (−2x2) : (−2x2)
= 2x3 − 1,5x + 1
Lời giải
b) (0,5x3 − 1,5x2 + x) : 0,5x
= 0,5x3 : 0,5x + (−1,5x2) : 0,5x + x : 0,5x
= x2 − 3x + 2
Lời giải
c) (x3 + 2x2 − 3x + 1) : x2
Ta có thể viết : x3 + 2x2 − 3x + 1 = (3x + 6)x2 + (−3x + 1)
Do đa thức – 3x + 1 có bậc là 1, nhỏ hơn bậc 2 của đa thức chia nên đẳng thức này chứng tỏ 3x + 6 là thương và – 3x + 1 là dư trong phép chia đã cho.
Lời giải
a) (x3 − 4x2 − x + 12) : (x − 3)
Vậy kết quả của phép chia (x3 − 4x2 − x + 12) : (x − 3) bằng x2 − x − 4.
Lời giải
b) (2x4 − 3x3 + 3x2 + 6x − 14) : (x2 − 2)
Vậy kết quả phép chia (2x4 − 3x3 + 3x2 + 6x − 14) : (x2 − 2) bằng 2x2 −3x + 7
Câu 7
Khi làm phép chia (6x3 − 7x2 − x + 2) : (2x + 1) , bạn Quỳnh cho kết quả đa thức dư là 4x + 2.
a) Không làm phép chia, hãy cho biết bạn Quỳnh đúng hay sai, tại sao?
Khi làm phép chia (6x3 − 7x2 − x + 2) : (2x + 1) , bạn Quỳnh cho kết quả đa thức dư là 4x + 2.
a) Không làm phép chia, hãy cho biết bạn Quỳnh đúng hay sai, tại sao?
Lời giải
a) Quỳnh sai. Vì bậc của đa thức dư, nếu khác 0, phải nhỏ hơn bậc của đa thức chia.
Lời giải
b) (6x3 − 7x2 − x + 2) : (2x + 1)
Vậy thương của phép chia (6x3 − 7x2 − x + 2) : (2x + 1) bằng 3x2 − 5x + 2 dư 0.
Câu 9
Cho hai đa thức A = 3x4 + x3 + 6x −5 và B = x2 + 1. Tìm thương Q và dư R trong phép chia A cho B rồi kiểm nghiệm lại rằng A = BQ + R.
Cho hai đa thức A = 3x4 + x3 + 6x −5 và B = x2 + 1. Tìm thương Q và dư R trong phép chia A cho B rồi kiểm nghiệm lại rằng A = BQ + R.
Lời giải
Thực hiện phép chia (3x4 + x3 + 6x −5) : (x2 + 1)
Vậy phép chia (3x4 + x3 + 6x −5) : (x2 + 1) có thương Q = 3x2 + x − 3 và dư R = 5x − 2
Kiểm nghiệm BQ + R = (x2 + 1)(3x2 + x − 3) + 5x − 2
= x2( 3x2 + x − 3) + 1. (3x2 + x − 3) + 5x − 2
= 3x4 + x3 − 3x2 + 3x2 + x − 3 + 5x − 2
= 3x4 + x3 + (−3x2 + 3x2) + (x + 5x) + (−3 − 2)
= 3x4 + x3 + 6x −5 = A
Vậy A = BQ + R là một đẳng thức đúng.
Lời giải
a) (2x4 + x3 − 3x2 + 5x − 2) : (x2 − x + 1)
Vậy phép chia (2x4 + x3 − 3x2 + 5x − 2) : (x2 − x + 1) có thương là 2x2 + 3x − 2.
Lời giải
b) (x4 − x3 − x2 + 3x) : (x2 − 2x +3)
Vậy phép chia (x4 − x3 − x2 + 3x) : (x2 − 2x +3) có thương là x2 + x − 2 và dư −4x + 6.
Câu 12
Cho đa thức A(x) = 3x4 + 11x3 − 5x2 − 19x − 5 . Tìm đa thức H(x) sao cho:
A(x) = (3x2 + 2x − 5).H(x)
Cho đa thức A(x) = 3x4 + 11x3 − 5x2 − 19x − 5 . Tìm đa thức H(x) sao cho:
A(x) = (3x2 + 2x − 5).H(x)
Lời giải
Ta có A(x) = (3x2 + 2x − 5).H(x)
H(x) = A(x) : (3x2 + 2x − 5) = (3x4 + 11x3 − 5x2 − 19x − 5) : (3x2 + 2x − 5)
Vậy H(x) = x2 + 3x − 2.
Lời giải
Thực hiện phép chia P(x) : (x + 2)
Để phép chia này là phép chia hết thì m − 30 = 0.
Vậy m = 30.
Câu 14
Cho đa thức P(x). Chứng minh rằng:
a) Nếu P(x) chia hết cho x – a thì a là một nghiệm của đa thức P(x).
Cho đa thức P(x). Chứng minh rằng:
a) Nếu P(x) chia hết cho x – a thì a là một nghiệm của đa thức P(x).
Lời giải
a) Giả sử P(x) chia hết cho x – a. Gọi Q(x) là đa thức thương, ta có:
P(x) = (x − a)Q(x) (1)
Từ đẳng thức (1), ta có P(a) = (a − a)Q(a) = 0.
Vậy a là một nghiệm của P(x).
Lời giải
b) Ngược lại, cho a là một nghiệm của P(x). Giả sử chia P(x) cho x – a, ta được thương là Q(x) và dư là R(x), nghĩa là ta có:
P(x) = (x – a)Q(x) + R(x) (2)
Trong đó hoặc R(x) = 0, hoặc nếu R(x) ≠ 0 thì R(x) phải có bậc nhỏ hơn bậc của đa thức x – a, tức là nhỏ hơn 1.
Sau đây, ta sẽ chứng tỏ rằng chỉ có thể xảy ra R(x) = 0.
Thật vậy, nếu R(x) ≠ 0 thì do bậc của R(x) nhỏ hơn 1 nên R(x) có bậc 0. Nói cách khác, R(x) là một số khác 0 nào đó. Nhưng điều đó là vô lí vì khi đó đẳng thức (2) không thể xảy ra, chẳng hạn khi x = a thì vế trái bằng 0 trong khi vế phải khác 0.
Vậy chỉ có thể xảy ra R(x) = 0, nghĩa là P(x) chia hết cho x – a.
226 Đánh giá
50%
40%
0%
0%
0%