Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB với đường tròn (A, B là hai tiếp điểm). Lấy điểm C trên cung nhỏ AB (C không trùng với A và B). Từ điểm C kẻ CD vuông góc với AB, CE vuông góc với MA, CF vuông góc với MB( . Gọi I là giao điểm của AC và DE K là giao điểm của BC và DF. Chứng minh rằng
1) Tứ giácABCE nội tiếp một đường tròn.
2) Hai tam giác CDE & CFD đồng dạng.
3) Tia đối của tia CD là tia phân giác góc
4) Đường thẳng IK song song với đường thẳng AB