(Trả lời ngắn) 22 bài tập Ứng dụng hình học của tích phân (có lời giải)
18 người thi tuần này 4.6 84 lượt thi 22 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
\(\frac{4}{{15}}\)
Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} + x - 1\), \(y = {x^4} + x - 1\), \(x = - 1,x = 1\) là
\(S = \int\limits_{ - 1}^1 {\left| {{x^2} - {x^4}} \right|{\rm{d}}} x = \int\limits_{ - 1}^0 {\left| {{x^2} - {x^4}} \right|{\rm{d}}} x + \int\limits_0^1 {\left| {{x^2} - {x^4}} \right|{\rm{d}}} x\)
\( = \left| {\int\limits_{ - 1}^0 {\left( {{x^2} - {x^4}} \right){\rm{d}}} x} \right| + \left| {\int\limits_0^1 {\left( {{x^2} - {x^4}} \right){\rm{d}}} x} \right| = \left| {\left( {\frac{{{x^3}}}{3} - \frac{{{x^5}}}{5}} \right)\left| \begin{array}{l}0\\ - 1\end{array} \right.} \right| + \left| {\left( {\frac{{{x^3}}}{3} - \frac{{{x^5}}}{5}} \right)\left| \begin{array}{l}1\\0\end{array} \right.} \right| = \frac{2}{{15}} + \frac{2}{{15}} = \frac{4}{{15}}\).
Lời giải
\[t = 3\]
Ta có: \[S\left( t \right) = \int\limits_1^t {\left| {2x + 1} \right|} {\rm{ d}}x = \int\limits_1^t {\left( {2x + 1} \right)} {\rm{ d}}x\].
Suy ra \[S\left( t \right) = \left. {\left( {{x^2} + x} \right)} \right|_1^t = {t^2} + t - 2\].
Do đó \[S\left( t \right) = 10 \Leftrightarrow {t^2} + t - 2 = 10 \Leftrightarrow {t^2} + t - 12 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = - 4{\rm{ }}\left( L \right)\end{array} \right.\].
Vậy \[t = 3\].
Lời giải
\(m = 2\)
Vì \(m > 0\) nên \(2x + 3 > 0,\,\forall x \in \left[ {0\,;\,m} \right]\).
Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = 2x + 3\) và các đường thẳng \(y = 0,\,x = 0\,,\,x = m\) là:
\(S = \int\limits_0^m {\left( {2x + 3} \right).{\rm{d}}x} = \left. {\left( {{x^2} + 3x} \right)} \right|_0^m = {m^2} + 3m\).
Theo giả thiết ta có:
\(S = 10 \Leftrightarrow {m^2} + 3m = 10 \Leftrightarrow {m^2} + 3m - 10 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 2\\m = - 5\,\end{array} \right. \Leftrightarrow m = 2\,\,\,\left( {{\rm{do}}\,\,\,m > 0} \right)\).
Lời giải
\(\frac{{{S_1}}}{{{S_2}}} = 2\)
Ta có diện tích hình vuông \(OABC\) là \(16\) và bằng \({S_1}\, + \,{S_2}\).
\({S_2} = \,\,\int\limits_0^4 {\frac{1}{4}{x^2}{\rm{d}}x} \,\, = \,\left. {\,\frac{{{x^3}}}{{12}}} \right|_0^4\, = \,\,\frac{{16}}{3}\)\[\,\, \Rightarrow \,\,\,\,\frac{{{S_1}}}{{{S_2}}}\,\,\, = \,\,\,\frac{{16 - {S_2}}}{{{S_2}}}\,\,\, = \,\,\,\frac{{16 - \frac{{16}}{3}}}{{\frac{{16}}{3}}}\,\,\, = \,\,\,2\]
Lời giải
\[k = \ln 3\]
Diện tích hình thang cong \[\left( H \right)\] giới hạn bởi các đường \[y = {{\rm{e}}^x}\], \[y = 0\], \[x = 0\], \[x = \ln 4\] là
\[S = \int\limits_0^{\ln 4} {{{\rm{e}}^x}{\rm{d}}x} = \left. {{{\rm{e}}^x}} \right|_0^{\ln 4} = \]\[{{\rm{e}}^{\ln 4}} - {{\rm{e}}^0} = 4 - 1 = 3\](đvdt).
Ta có \[S = {S_1} + {S_2} = {S_1} + \frac{1}{2}{S_1} = \frac{3}{2}{S_1}\]. Suy ra \[{S_1} = \frac{{2S}}{3} = \frac{{2.3}}{3} = 2\] (đvdt).
Vì \[{S_1}\] là phần diện tích được giới hạn bởi các đường \[y = {{\rm{e}}^x}\], \[y = 0\], \[x = 0\], \[x = k\] nên
\[2 = {S_1} = \int\limits_0^k {{{\rm{e}}^x}{\rm{d}}x} = \left. {{{\rm{e}}^x}} \right|_0^k = \]\[{{\rm{e}}^k} - {{\rm{e}}^0} = {{\rm{e}}^k} - 1\].
Do đó \[{{\rm{e}}^k} = 3 \Leftrightarrow k = \ln 3\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.













