Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Cho I là trung điểm của đoạn thẳng AB. Vẽ các đường tròn (I; IA) và (B; BA). Hai đường tròn (I) và (B) nói trên có vị trí tương đối như thế nào với nhau? Vì sao?

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

 Vì A, I, B thẳng hàng nên:

BI = AB – AI

Vậy đường tròn (I; IA) tiếp xúc với đường tròn (B; BA) tại A.

Câu 2

Cho I là trung điểm của đoạn thẳng AB. Vẽ các đường tròn (I; IA) và (B; BA). Kẻ một đường thẳng đi qua A, cắt các đường tròn (I) và (B) theo thứ tự tại M và N. So sánh các độ dài AM và MN.

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác AMB nội tiếp trong đường tròn (I) có AB là đường kính nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: AM ⊥ BM hay BM ⊥ AN

Suy ra: AM = MN (đường kính vuông góc dây cung).

Câu 3

Cho hai đường tròn đồng tâm O. Gọi AB là dây bất kì của đường tròn nhỏ. Đường thẳng AB cắt đường tròn lớn ở C và D (A nằm giữa B và C). So sánh các độ dài AC và BD.

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ OI ⊥ AB. Ta có: OI ⊥ CD

Trong đường tròn (O) (nhỏ) ta có : OI ⊥ AB

Suy ra :

IA = IB (đường kính vuông góc dây cung)    (1)

Trong đường tròn (O) (lớn) ta có : OI ⊥ CD

Suy ra :

IC = ID (đường kính vuông góc dây cung)

Hay IA + AC = IB + BD     (2)

Từ (1) và (2) suy ra: AC = BD.

Câu 4

Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Gọi CD là tiếp tuyến chung ngoài của hai đường tròn (C ∈ (O), D ∈ (O’)). Tính số đo góc CAD

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ tiếp tuyến chung tạ IA cắt CD tại M

Trong đường tròn (O) ta có:

MA = MC (tính chất hai tiếp tuyến cắt nhau)

Trong đường tròn (O’) ta có :

MA = MD (tính chất hai tiếp tuyến cắt nhau)

Suy ra : MA = MC = MD = 12 CD

Tam giác ACD có đường trung tuyến AM ứng với cạnh CD bằng nửa cạnh CD nên tam giác ACD vuông tại A

Suy ra : Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Câu 5

Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Gọi CD là tiếp tuyến chung ngoài của hai đường tròn (C ∈ (O), D ∈ (O’)). Tính độ dài CD biết OA = 4,5cm, O’A = 2cm

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có :

MO là tia phân giác của góc (CMA) (tính chất hai tiếp tuyến cắt nhau)

MO’ là tia phân giác của góc (DMA) (tính chất hai tiếp tuyến cắt nhau)

Suy ra : MO ⊥ MO’ (tính chất hai góc kề bù)

Tam giác MOO’ vuông tại M có MA ⊥ OO’ (tính chất tiếp tuyến)

Theo hệ thức lượng trong tam giác vuông, ta có :

MA2 = OA.O’A = 4,5.2 = 9 ⇒ MA = 3 (cm)

 

Mà MA = 12 CD ⇒ CD = 2.MA = 2.3 = 6 (cm)

Câu 6

Cho hai đường tròn đồng tâm O. Một đường tròn (O’) cắt một đường tròn tâm O tại A, B và cắt đường tròn tâm O còn lại tại C, D. Chứng minh rằng AB // CD.

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì đường tròn (O’) cắt đường tròn (O ; OA) tại A và B nên OO’ là trung trực của AB

Suy ra : OO’ ⊥ AB     (1)

Vì đường tròn (O’) cắt đường tròn (O ; OC) tại C và D nên OO’ là trung trực của CD

Suy ra : OO’ ⊥ CD     (2)

Từ (1) và (2) suy ra : AB // CD.

Câu 7

Cho đường tròn (O ; 3cm) và đường tròn (O’; 1cm) tiếp xúc ngoài tại A. Vẽ hai bán kính OB và O’C song song với nhau thuộc cùng nửa mặt phẳng có bờ OO’. Tính số đo góc BAC.

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có : OB // O’C (gt)

Suy ra : (hai góc trong cùng phía)

OA = OB (=R)

⇒ Tam giác AOB cân tại O

Câu 8

Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ các đường kính AOB, AO’C. Gọi DE là tiếp tuyến chung của hai đường tròn (D ∈ (O), E ∈ (O’)). Gọi M là giao điểm của BD và CE. Tính số đo góc DAE.

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ tiếp tuyến chung tại A cắt DE tại I

Trong đường tròn (O) ta có:

IA = ID (tính chất hai tiếp tuyến cắt nhau)

Trong đường tròn (O’) ta có :

IA = IE (tính chất hai tiếp tuyến cắt nhau)

Suy ra : IA = ID = IE = (1/2).DE

Tam giác ADE có đường trung tuyến AI ứng với cạnh DE và bằng nửa cạnh DE nên tam giác ADE vuông tại A

Suy ra: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Câu 9

Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ các đường kính AOB, AO’C. Gọi DE là tiếp tuyến chung của hai đường tròn (D ∈ (O), E ∈ (O’)). Gọi M là giao điểm của BD và CE. Tứ giác ADME là hình gì? Vì sao ?

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác ABD nội tiếp trong đường tròn (O) có AB là đường kính nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác AEC nội tiếp trong đường tròn (O’) có AC là đường kính nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Mặt khác: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 (chứng minh trên)

Tứ giác ADME có ba góc vuông nên nó là hình chữ nhật.

Câu 10

Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ các đường kính AOB, AO’C. Gọi DE là tiếp tuyến chung của hai đường tròn (D ∈ (O), E ∈ (O’)). Gọi M là giao điểm của BD và CE. Chứng minh rằng MA là tiếp tuyến chung của hai đường tròn.

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tứ giác ADME là hình chữ nhật và ID = IE (chứng minh trên) nên đường chéo AM của hình chữ nhật phải đi qua trung điểm I của DE. Suy ra: A, I, M thẳng hàng.

Ta có: IA ⊥ OO’ (vì IA là tiếp tuyến của (O))

Suy ra: AM ⊥ OO’

Vậy MA là tiếp tuyến chung của đường tròn (O) và (O’)

Câu 11

Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN của hai đường tròn (M ∈ (O), N ∈ (O’)). Gọi P là điểm đối xứng với M qua OO’, Q là điểm đối xứng với N qua OO’. Chứng minh rằng: MNQP là hình thang cân.

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì M và P đối xứng qua trục OO’ nên OO’ là đường trung trực của MP

Suy ra: OP = OM

Khi đó P thuộc (O) và MP ⊥ OO’    (1)

Vì N và Q đối xứng qua trục OO’ nên OO’ là đường trung trực của NQ

Suy ra: O’N = O’Q

Khi đó Q thuộc (O’) và NQ ⊥ OO’    (2)

Từ (1) và (2) suy ra: MP // NQ

Tứ giác MNQP là hình thang

Vì OO’ là đường trung trực của MP và NQ nên OO’ đi qua trung điểm hai đáy hình thang MNQP, OO’ đồng thời cũng là trục đối xứng của hình thang MNQP nên MNQP là hình thang cân.

Câu 12

Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN của hai đường tròn (M ∈ (O), N ∈ (O’)). Gọi P là điểm đối xứng với M qua OO’, Q là điểm đối xứng với N qua OO’. Chứng minh rằng: PQ là tiếp tuyến chung của hai đường tròn (O) và (O’).

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: MN ⊥ OM (tính chất tiếp tuyến)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: QP ⊥ OP tại P

Vậy PQ là tiếp tuyến của đường tròn (O).

Ta có: MN ⊥ O’N (tính chất tiếp tuyến)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: QP ⊥ O’Q tại Q

Câu 13

Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN của hai đường tròn (M ∈ (O), N ∈ (O’)). Gọi P là điểm đối xứng với M qua OO’, Q là điểm đối xứng với N qua OO’. Chứng minh rằng: MN + PQ = MP + NQ.

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ tiếp tuyến chung tại A cắt MN tại E và PQ tại F

Trong đường tròn (O), theo tính chất hai tiếp tuyến cắt nhau, ta có:

EM = EA và FP = FA

Trong đường tròn (O’), theo tính chất hai tiếp tuyến cắt nhau, ta có:

EN = EA và FQ = FA

Suy ra: EM = EA = EN = (1/2).MN

FP = FA = FQ = (1/2).PQ

Suy ra : MN + PQ = 2EA + 2FA = 2(EA + FA) = 2EF    (9)

Vì EF là đường trung bình của hình thang MNQP nên :

EF = (MP + NQ)/2 hay MP + NQ = 2EF    (10)

Từ (9) và (10) suy ra: MN + PQ = MP + NQ

Câu 14

Cho hai đường tròn (O; 2cm), (O’; 3cm), OO’ = 6cm. Hai đường tròn (O) và (O’) có vị trí tương đối như thế nào với nhau?

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì OO’ = 6 > 2 + 3 hay OO’ > R + R’ nên hai đường tròn (O) và (O’) ở ngoài nhau.

Câu 15

Cho hai đường tròn (O; 2cm), (O’; 3cm), OO’ = 6cm. Vẽ đường tròn (O’; 1cm) rồi kẻ tiếp tuyến OA với đường tròn đó (A là tiếp điểm). Tia O’A cắt đường tròn (O’; 3cm) ở B. Kẻ bán kính OC của đường tròn (O) song song với O’B, B và C thuộc cùng một nửa mặt phẳng có bờ OO’. Chứng minh rằng BC là tiếp tuyến chung của hai đường tròn (O; 2cm), (O’; 3cm).

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét tứ giác ABCO ta có:

AB // CO (gt)    (1)

Mà : AB = O’B – O’A = 3 – 1 = 2    (cm)

Suy ra: AB = OC = 2 (cm) (2)

Từ (1) và (2) suy ra: ABCO là hình bình hành

Lại có: OA ⊥ O’A (tính chất tiếp tuyến)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: BC ⊥ OC và BC ⊥ O’B

Vậy BC là tiếp tuyến chung của hai đường tròn (O) và (O’)

Câu 16

Cho hai đường tròn (O; 2cm), (O’; 3cm), OO’ = 6cm. Tính độ dài BC

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì tứ giác ABCO là hình chữ nhật nên OA = BC

Áp dụng định lí Pitago vào tam giác vuông OAO’, ta có:

OO'2=OA2+O'A2

OA2=OO'2-O'A2=62-12 = 35 ⇒ OA = 35 (cm)

Vậy BC = 35 (cm)

Câu 17

Cho hai đường tròn (O; 2cm), (O’; 3cm), OO’ = 6cm. Gọi I là giao điểm của BC và OO’/ Tính độ dài IO

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong tam giác O’BI có OC // O’B

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy OI = (6.2)/1 = 12 (cm)

Câu 18

Cho đường tròn (O; R), điểm A nằm bên ngoài đường tròn (R < OA < 3R). Vẽ đường tròn (A; 2R). Hai đường tròn (O) và (A) có vị trí tương đối như thế nào với nhau?

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: R < OA < 3R ⇔ 2R – R < OA < 2R + R

Suy ra hai đường tròn (O ; R) và (A ; 2R) cắt nhau

Câu 19

Cho đường tròn (O; R), điểm A nằm bên ngoài đường tròn (R < OA < 3R). Vẽ đường tròn (A; 2R). Gọi B là một giao điểm của hai đường tròn trên. Vẽ đường kính BOC của đường tròn (O). Gọi D là giao điểm (khác C) của AC và đường tròn (O). Chứng minh rằng AD = DC

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác BCD nội tiếp trong đường tròn (O) có BC là đường kính nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra : BD ⊥ AC     (1)

Ta có : AB = 2R và BC = 2OB = 2R

Suy ra tam giác ABC cân tại B    (2)

Từ (1) và (2) suy ra : AD = DC

Câu 20

Cho đường tròn (O; 2cm) tiếp xúc với đường thẳng d. Dựng đường tròn (O’; 1cm) tiếp xúc với đường thẳng d và tiếp xúc ngoài với đường tròn (O).

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

* Phân tích

- Giả sử dựng được đường tròn (O’; 1cm) tiếp xúc với đường thẳng d và tiếp xúc ngoài với đường tròn (O; 2cm).

- Đường tròn (O’; 1cm) tiếp xúc với d nên O’ cách d một khoảng bằng 1cm. Khi đó O’ nằm trên hai đường thẳng d1d2 song song với d và cách d một khoảng bằng 1cm.

- Đường tròn (O’; 1cm) tiếp xúc với đường tròn (O; 2cm) nên suy ra OO’ = 3cm. Khi đó O’ là giao điểm của (O; 3cm) với d1 và d2

* Cách dựng

- Dựng hai đường thẳng d1 và d2 song song với d và cách d một khoảng bằng 1cm.

- Dựng đường tròn (O; 3cm) cắt d1 tại O'1. Vẽ (O'1; 1cm) ta có đường tròn cần dựng

* Chứng minh

Theo cách dựng, O'1 cách d một khoảng bằng 1cm nên (O’1; 1cm) tiếp xúc với d.

Vì OO'1 = 3cm nên (O'1; 1cm) tiếp xúc với (O; 2cm)

* Biện luận: O các d1 một khoảng bằng 1cm nên (O; 3cm) cắt d1 tại hai điểm phân biệt.

Câu 21

Cho hai đường tròn (O;R) và (O’;r). Điền vào chỗ trống của bảng sau:

Lời giải

RrOO’Hệ thức giữa OO’, R, rVị trí tương đối của (O) và (O’)
312OO’ = R - rTiếp xúc trong
314OO’ = R + rTiếp xúc ngoài
313,5R – r < OO’ < R + rCắt nhau
315OO’ > R + rỞ ngoài nhau
311OO’ < R - r(O) đựng (O’)

Câu 22

Cho hai đường tròn (O; 3cm) và (O’; 4cm) có OO’ = 5cm. Hai đường tròn (O) và (O’) có vị trí tương đối nào?

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi (O) và (O’) cắt nhau.

Câu 23

Cho hai đường tròn (O; 3cm) và (O’; 4cm) có OO’ = 5cm. Tính độ dài dây chung của hai đường tròn.

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi A và B là giao điểm của hai đường tròn (O) và (O’), H là giao điểm của AB và OO’.

Tam giác AOO’ vuông tại A, AH ⏊ OO’ và AB = 2AH.

Ta tính được AH = 2,4cm nên AB = 4,8cm.

Câu 24

Cho đường tròn (O) và điểm A cố định trên đường tròn. Điểm B chuyển động trên đường tròn. Chứng minh rằng trung điểm M của AB chuyển động trên một đường tròn (O’).

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

(AMO) = 90°. Điểm M chuyển động trên đường tròn (O’) đường kính AO.

Câu 25

Cho đường tròn (O) và điểm A cố định trên đường tròn. Điểm B chuyển động trên đường tròn. Đường tròn (O’) có vị trí tương đối nào với đường tròn (O) ?

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Đường tròn (O’) tiếp xúc trong với đường tròn (O).

4.6

11377 Đánh giá

50%

40%

0%

0%

0%