Giải SGK Toán 9 KNTT Bài tập cuối chương 1 có đáp án
41 người thi tuần này 4.6 815 lượt thi 14 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất)- Đề số 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: B
Nhân hai vế của phương trình thứ nhất cho 3 và chia hai vế của phương trình thứ hai cho 5, ta được:
Trừ từng vế hai phương trình của hệ mới, ta được 11y = 22 hay y = 2.
Thế y = 2 vào phương trình thứ hai của hệ đã cho, ta có 3x + 2 . 2 = –5 hay 3x = –9, suy ra x = –3.
Do đó, hệ phương trình đã cho có nghiệm là (–3; 2).
Vậy ta chọn đáp án B.
Lời giải
Đáp án đúng là: C
• Thay x = 1; y = 2 vào phương trình đường thẳng, ta có:
4 . 1 – 3 . 2 = 4 – 6 = –2 ≠ –1.
Suy ra đường thẳng 4x – 3y = –1 không đi qua A(1; 2).
Do đó, loại đáp án A và D.
• Thay x = 5; y = 6 vào phương trình đường thẳng, ta có:
4 . 5 – 3 . 6 = 20 – 18 = 2 ≠ –1.
Suy ra đường thẳng 4x – 3y = –1 không đi qua B(5; 6).
Do đó, loại đáp án B.
• Thay x = 2; y = 3 vào phương trình đường thẳng, ta có:
4 . 2 – 3 . 3 = 8 – 9 = –1.
Suy ra đường thẳng 4x – 3y = –1 không đi qua C(2; 3).
Do đó, ta chọn đáp án C.
Lời giải
Đáp án đúng là: C
Chia hai vế của phương trình thứ nhất cho 0,3 và nhân hai vế của phương trình thứ hai với 2, ta được:
Cộng từng vế hai phương trình của hệ mới, ta được x = −3.
Thế x = −3 vào phương trình thứ hai của hệ đã cho, ta có
(−2) . (−3) + y = –2 hay 6 + y = –2, suy ra y = –8.
Do đó, hệ phương trình đã cho có nghiệm là (−3; −8).
Lời giải
Đáp án đúng là: B
Chia hai vế của phương trình thứ nhất cho 0,3 ta được:
Trừ từng vế hai phương trình của hệ mới, ta được 0x + 0y = 12. (1)
Do không có giá trị nào của x và y thỏa mãn hệ thức (1) nên hệ phương trình đã cho vô nghiệm.
Lời giải
a) Nhân hai vế của phương trình thứ nhất với 5, ta được: .
Trừ từng vế hai phương trình của hệ mới, ta được 0x + 0y = 5. (1)
Do không có giá trị nào của x và y thỏa mãn hệ thức (1) nên hệ phương trình đã cho vô nghiệm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.