Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Chương trình khác
Môn học
76 lượt thi câu hỏi
119 lượt thi
Thi ngay
80 lượt thi
38 lượt thi
92 lượt thi
94 lượt thi
47 lượt thi
82 lượt thi
118 lượt thi
Câu 1:
Chọn phương án đúng.
Cho tứ giác ABCD nội tiếp một đường tròn với \(\widehat A = 70^\circ ,\) \(\widehat B = 100^\circ .\) Khẳng định nào sau đây là đúng?
A. \(\widehat C = 110^\circ .\)
B. \(\widehat C = 80^\circ .\)
C. \(\widehat D = 110^\circ .\)
D. \(\widehat B - \widehat C = 30^\circ .\)
Cho hình chữ nhật ABCD có AB = 3 cm, BC = 4 cm và nội tiếp đường tròn (O; R). Khẳng định nào sau đây là sai?
A. O là trung điểm của AC.
B. O là trung điểm của BD.
C. R = 5 cm.
D. R = 2,5 cm.
Câu 2:
Khẳng định nào sau đây là đúng?
A. Có vô số đường tròn khác nhau cùng ngoại tiếp một hình vuông.
B. Mỗi đường tròn ngoại tiếp đúng một hình vuông.
C. Hai hình vuông có cạnh bằng nhau thì cùng nội tiếp một đường tròn.
D. Hai hình vuông cùng nội tiếp một đường tròn thì có diện tích bằng nhau.
Câu 3:
Cho ABCD là tứ giác nội tiếp. Tính số đo các góc còn lại của tứ giác trong mỗi trường hợp sau:
a) \[\widehat A = 60^\circ ,\] \[\widehat B = 80^\circ .\]
b) \[\widehat B = 70^\circ ,\] \[\widehat C = 90^\circ .\]
c) \[\widehat C = 100^\circ ,\] \[\widehat D = 60^\circ .\]
d) \[\widehat D = 110^\circ ,\] \[\widehat A = 80^\circ .\]
Câu 4:
Cho điểm I nằm ngoài đường tròn (O). Qua I kẻ hai đường thẳng lần lượt cắt (O) tại bốn điểm A, B và C, D sao cho A nằm giữa B và I, C nằm giữa D và I. Chứng minh rằng \[\widehat {IBD} = \widehat {ICA},\] \[\widehat {IAC} = \widehat {IDB}\] và IA.IB = IC.ID.
Câu 5:
Cho hình bình hành ABCD nội tiếp đường tròn (O). Chứng minh rằng ABCD là hình chữ nhật.
Câu 6:
Cho hình thang ABCD (AB song song với CD) nội tiếp đường tròn (O). Chứng minh rằng ABCD là hình thang cân.
Câu 7:
Tính diện tích của một hình chữ nhật, biết rằng hình chữ nhật đó có chiều dài gấp hai lần chiều rộng và bán kính đường tròn ngoại tiếp bằng 2,5 cm.
Câu 8:
Người ta muốn dựng một khung cổng hình chữ nhật rộng 4 m và cao 3 m, bên ngoài khung cổng được bao bởi một khung thép dạng nửa đường tròn như hình bên. Tính chiều dài của đoạn thép làm khung nửa đường tròn đó.
Câu 9:
Cho hình vuông ABCD nội tiếp (O) với AB = 4 cm. Hãy tính diện tích hình viên phân giới hạn bởi dây cung AB và cung nhỏ AB của (O).
Câu 10:
Cho tam giác nhọn ABC có các đường cao BE, CF cắt nhau tại H. Chứng minh rằng:
a) \(\widehat {EFH} = \widehat {HBC};\) \(\widehat {FEH} = \widehat {HCB};\)
b) \(\widehat {BHF} = \widehat {BAC} = \widehat {CHE}.\)
15 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com