Trắc nghiệm Đạo hàm của các hàm số lượng giác có đáp án (phần 2)

  • 402 lượt thi

  • 23 câu hỏi

  • 50 phút


Danh sách câu hỏi

Câu 1:

Tính đạo hàm của hàm số y = x.cosx

Xem đáp án

Chọn A

Ta áp dụng đạo hàm của 1 tích :

y'=(x)'.cosx +​ x. (cosx)' =1.cosx +​ x. (- sinx)=cosx- x.sin x


Câu 2:

Tính đạo hàm của hàm số sau: y=sin32x+1

Xem đáp án

Chọn D

Bước đầu tiên áp dung công thức uα/với u=sin2x+1 

  Vậy

y'=sin32x+1/=3sin22x+1.sin2x+1/. 

* Tính sin2x+1/: Áp dụng sinu/, với u=2x+1 

Ta được: 

sin2x+1/=cos2x+1.2x+1/=2cos2x+1.

 

 y'=3.sin22x+1.2cos2x+1=6sin22x+1cos2x+1.

 


Câu 3:

Tính đạo hàm của hàm số sau y=sin2+x2

Xem đáp án

Chọn D.

Áp dụng công thức sinu/ Với u=2+x2

y'=cos2+x2.2+x2/=cos2+x2.2+x2/22+x2=x2+x2.cos2+x2.


Câu 4:

Tính đạo hàm của hàm số sau y=sinx+2x

Xem đáp án

Chọn A.

Áp dụng u/, với  u=sinx+2x

y'=sinx+2x/2sinx+2x=cosx+22sinx+2x.


Câu 5:

Hàm số y=fx=2cosπx có f'3 bằng

Xem đáp án

Chọn C

f'x=2cosπx'=2.cosπx'.1cos2πx=2πsin(πx).1cos2πx=2.πsinπxcos2πx

f'3=2π.sin3πcos23π=0


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Đánh giá

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận