Khoảng cách có đáp án

  • 486 lượt thi

  • 15 câu hỏi

  • 50 phút


Danh sách câu hỏi

Câu 1:

Trong các mệnh đề sau, mệnh đề nào sai?

Xem đáp án

Sử dụng các định nghĩa, tính chất về khoảng cách giữa hai mặt phẳng song song, hai đường thẳng chéo nhau, đường thẳng và mặt phẳng song song, nhận thấy các phương án A, B, D đúng.

Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc đường thẳng b đến mặt phẳng (P) chứa a và song song với b chứ không phải khoảng cách giữa hai điểm như đáp án C nói nên C sai.

Đáp án C


Câu 2:

Trong các mệnh đề sau, mệnh đề nào đúng?

Xem đáp án

Đáp án A: đúng

Đáp án B: Sai, do phát biểu này thiếu yếu tố cắt nhau.

Đáp án C: Sai, vì mặt phẳng đó chưa chắc đã tồn tại.

Đáp án D: Sai, do phát biểu này thiếu yếu tố vuông góc.

ĐÁP ÁN A


Câu 3:

Cho khối lập phương ABCDA’B’C’D’. Đoạn vuông góc chung của hai đường thẳng chéo nhau AD và A’C’ là :

Xem đáp án

Ta có: AA'AD tại A; AA'A'C' tại A’

Do đó đoạn vuông góc chung của hai đường thẳng chéo nhau AD và A’C’ là AA’.

Đáp án A


Câu 4:

Cho hình chóp S.ABCD có đáy là hình vuông, tâm O, SA vuông góc với đáy, SA = a. Góc giữa đường thẳng SD và mặt phẳng (SAC) bằng 30°. Tính khoảng cách từ điểm D đến mặt phẳng (SBM) với M là trung điểm CD.

Xem đáp án

+ Ta có DBACDBSADBSACDBSO tại O

 Hình chiếu vuông góc của SD lên mặt phẳng (SAC) là SO

Do đó góc giữa SD và (SAC) là DSO^=30°

+ Đặt DO = x  DB = 2x; AO = BO = CO = x

Ta có: ΔSAB=ΔSADc.g.c nên SB = SD  Tam giác SBD cân tại S, mà có O là trung điểm BC  DSB^=2DSO^=60° 

Tam giác SBD đều  SO = 2x 32= x3

Theo Py-ta-go trong tam giác SOA vuông tại A, ta có: SO2=AO2+SA2

hay 3x2 =  x2+a2x2= a2/ 2

x =a2

+ Gọi N là trung điểm của AB DN // BM

Suy ra d(D; (SBM)) = d(N;(SBM)) = 1/2 d(A; (SBM))

+ Kẻ AI BM tại I và AH  SI tại H. Từ đó ta chứng minh được AH  (SBM)

  d(A; (SBM)) = AH  d(D; (SBM)) = 1/2 AH.

+ Tính AH

BM = BC2 +CM2=  a52

Trong (ABCD): SABM=SABCD2SADM=a22.a24=a22

SABM=12AI. BM  AI = 2a5

Áp dụng hệ thức về cạnh, đường cao trong tam giác vuông SAI có:

   1AH2=1AI2+1SA2AH = 2a3

Vậy d(D; (SBM)) = 1/2. AH = a3

Đáp án A


Câu 5:

Một hình lập phương được tạo thành khi xếp miếng bìa carton như hình vẽ bên.

Tính khoảng cách từ điểm O đến đường thẳng AB sau khi xếp, biết rằng độ dài đoạn thẳng AB bằng 2a.

Xem đáp án

Sau khi xếp miếng bìa lại ta được hình lập phương ABCD.A’B’C’D' cạnh 2a, O là tâm của A’B’C’D’.

Gọi N, M lần lượt là trung điểm các cạnh AB, A’B’.

MN = AA’ = 2a, OM = 1/2A’D’ = a

Lại có: ABOMABMNABON

d(O, AB) = ON = OM2+MN2=2a2+a2=a5.

Đáp án D


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Đánh giá

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận