Thi Online Trắc nghiệm Toán 11 Bài 1 : Trắc nghiệm định nghĩa đạo hàm có đáp án (Mới nhất)
Trắc nghiệm Toán 11 Bài 1: Trắc nghiệm định nghĩa đạo hàm có đáp án (Mới nhất)
-
463 lượt thi
-
23 câu hỏi
-
45 phút
Câu 1:
Giới hạn (nếu tồn tại) nào sau đây dùng để định nghĩa đạo hàm của hàm số \(y = f(x)\) tại\[{x_0} < 1\]?
Giới hạn (nếu tồn tại) nào sau đây dùng để định nghĩa đạo hàm của hàm số \(y = f(x)\) tại\[{x_0} < 1\]?
Hướng dẫn giải:
Theo định nghĩa đạo hàm của hàm số tại một điểm thì biểu thức ở đáp án C đúng.
Chọn C.
Câu 2:
Cho hàm số \(f\left( x \right)\) liên tục tại \[{x_0}\]. Đạo hàm của \(f\left( x \right)\) tại \[{x_0}\] là
Hướng dẫn giải:
Chọn C.
Định nghĩa \[f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - f({x_0})}}{{\Delta x}}\] hay \[f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f({x_0} + h) - f({x_0})}}{h}\] (nếu tồn tại giới hạn).
Câu 3:
Cho hàm số \(y = f(x)\)có đạo hàm tại \({x_0}\) là \[f'({x_0})\]. Khẳng định nào sau đây sai?
Cho hàm số \(y = f(x)\)có đạo hàm tại \({x_0}\) là \[f'({x_0})\]. Khẳng định nào sau đây sai?
Hướng dẫn giải:
Chọn D
A. Đúng (theo định nghĩa đạo hàm tại một điểm).
B. Đúng vì
\[\begin{array}{l}\Delta x = x - {x_0} \Rightarrow x = \Delta x + {x_0}\\\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\\ \Rightarrow f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \frac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x + {x_0} - {x_0}}} = \frac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}}\end{array}\]
C. Đúng vì
Đặt \[h = \Delta x = x - {x_0} \Rightarrow x = h + {x_0},\] \[\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\]
\[ \Rightarrow f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{{h + {x_0} - {x_0}}} = \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h}\]
Câu 4:
Số gia của hàm số \[f\left( x \right) = {x^3}\] ứng với \[{x_0} = 2\] và \[\Delta x = 1\] bằng bao nhiêu?
Số gia của hàm số \[f\left( x \right) = {x^3}\] ứng với \[{x_0} = 2\] và \[\Delta x = 1\] bằng bao nhiêu?
Hướng dẫn giải:
Chọn C.
Ta có \(\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right) = {\left( {{x_0} + \Delta x} \right)^3} - {2^3} = {x_0}^3 + {\left( {\Delta x} \right)^3} + 3{x_0}\Delta x\left( {{x_0} + \Delta x} \right) - 8\).
Với \[{x_0} = 2\] và \(\Delta x = 1\) thì \(\Delta y = 19\).
Câu 5:
Tỉ số \[\frac{{\Delta y}}{{\Delta x}}\] của hàm số \[f\left( x \right) = 2x\left( {x - 1} \right)\]theo x và \[\Delta x\]là
Tỉ số \[\frac{{\Delta y}}{{\Delta x}}\] của hàm số \[f\left( x \right) = 2x\left( {x - 1} \right)\]theo x và \[\Delta x\]là
Hướng dẫn giải:
Chọn C
\[\begin{array}{l}\frac{{\Delta y}}{{\Delta x}} = \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \frac{{2x\left( {x - 1} \right) - 2{x_0}\left( {{x_0} - 1} \right)}}{{x - {x_0}}}\\ = \frac{{2\left( {x - {x_0}} \right)\left( {x + {x_0}} \right) - 2\left( {x - {x_0}} \right)}}{{x - {x_0}}} = 2x + 2{x_0} - 2 = 4x + 2\Delta x - 2\end{array}\]
Có thể bạn quan tâm
Các bài thi hot trong chương
Đánh giá trung bình
0%
0%
0%
0%
0%