Đăng nhập
Đăng ký
97 lượt thi 40 câu hỏi 60 phút
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
Câu 8:
Câu 9:
Câu 10:
Câu 11:
Câu 12:
Câu 13:
Câu 14:
Câu 15:
Câu 16:
Câu 17:
Câu 18:
Câu 19:
Câu 20:
Câu 21:
Câu 22:
Câu 23:
Câu 24:
Câu 25:
Câu 26:
Hình bên là đồ thị hàm số nào?
Câu 27:
Câu 28:
Câu 29:
Câu 30:
Trong các hàm số sau đây, hàm số nào có đồ thị phù hợp với hình bên?
Câu 31:
Cho ba số thực dương a, b, c khác 1. Đồ thị các hàm số \({\rm{y}} = {\log _{\rm{a}}}{\rm{x}},{\rm{y}} = {\log _{\rm{b}}}{\rm{x}}\), \({\rm{y}} = {\log _{\rm{c}}}{\rm{x}}\) được cho như hình vẽ bên. Khẳng định nào sau đây là đúng?
A. \({\rm{b}} < {\rm{c}} < {\rm{a}}.\)
Câu 32:
Hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) nào sau đây có ba tính chất sau?
(1) Tập xác định của hàm số là \((0; + \infty ).\)
(2) Hàm số nghịch biến trên \(\mathbb{R}.\)
(3) \(\mathop {\lim }\limits_{x \to {0^ + }} f(x) = + \infty ,\mathop {\lim }\limits_{x \to + \infty } f(x) = - \infty .\)
A. \({\rm{y}} = {{\rm{a}}^{\rm{x}}},{\rm{a}} > 1.\)
B. \({\rm{y}} = {{\rm{a}}^{\rm{x}}},0 < {\rm{a}} < 1.\)
Câu 33:
(1) Tập xác định của hàm số là \(\mathbb{R}.\)
(2) Hàm số đồng biến trên \(\mathbb{R}.\)
(3) \(\mathop {\lim }\limits_{x \to - \infty } f(x) = 0,\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty .\)
Câu 34:
Cho ba số thực dương a, b, c khác 1. Đồ thị các hàm số \({\rm{y}} = {{\rm{a}}^{\rm{x}}},{\rm{y}} = {{\rm{b}}^{\rm{x}}},{\rm{y}} = {{\rm{c}}^{\rm{x}}}\) được cho như hình vẽ bên. Khẳng định nào sau đây là đúng?
Câu 35:
Hàm số \(y = f(x)\) nào sau đây có ba tính chất sau?
(3) \(\mathop {\lim }\limits_{x \to {0^ + }} f(x) = - \infty ,\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty .\)
Câu 36:
(3) \(\mathop {\lim }\limits_{x \to - \infty } f(x) = + \infty ,\mathop {\lim }\limits_{x \to + \infty } f(x) = 0.\)
Câu 37:
Hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) nào sau đây có bảng biến thiên như hình sau?
Câu 38:
Hàm số y=f(x) nào sau đây có bảng biến thiên như hình sau?
Câu 39:
Câu 40:
19 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com