Đăng nhập
Đăng ký
5781 lượt thi 21 câu hỏi 45 phút
38332 lượt thi
Thi ngay
10724 lượt thi
9200 lượt thi
8021 lượt thi
3389 lượt thi
10395 lượt thi
4982 lượt thi
5178 lượt thi
4992 lượt thi
Câu 1:
Tìm m để bất phương trình 4sin2x+cos2x+173cos2x+sin2x+m+1≥2 đúng với mọi x∈R
A. 10−3<m≤15−292
B. 10−1<m≤15−292
C. 10−3<m≤15+292
D. 10−1<m<10+1
Câu 2:
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=cos2x+cosx. Khi đó M+m bằng bao nhiêu?
A. M+m=98
B. M+m=97
C. M+m=87
D. M+m=78
Câu 3:
Có bao nhiêu giá trị x∈0;5π để hàm số y=tanx nhận giá trị bằng 0?
A. 9
B. 10
C. 7
D. 6
Câu 4:
Khẳng định nào sau đây là đúng?
A. y = |tanx| đồng biến trong −π2;π2
B. y = |tanx| là hàm số chẵn trên D=ℝ∖π2+kπ|k∈ℤ
C. y = |tanx| có đồ thị đối xứng qua gốc tọa độ
D. y = |tanx| luôn nghịch biến trong −π2;π2
Câu 5:
Hàm số nào dưới đây KHÔNG tuần hoàn?
A. y=sinx
B. y=cosx
C. y=sin2x
D. y=tanx+cot2x
Câu 6:
Tìm giá trị nhỏ nhất, giá trị lớn nhất của hàm số y = 3sinx+4cosx-1
A. miny=−6;maxy=4
B. miny=−5;maxy=5
C. miny=−3;maxy=4
D. miny=−6;maxy=6
Câu 7:
Hình nào dưới đây biểu diễn đồ thị hàm số y = f(x) = 2sin2x
A.
B.
C.
D.
Câu 8:
Xét sự biến thiên của hàm số y=1-sinx trên một chu kì tuần hoàn của nó. Trong các kết luận sau, kết luận nào sai?
A. Hàm số đã cho nghịch biến trên khoảng −π2;0
B. Hàm số đã cho nghịch biến trên khoảng 0;π2
C. Hàm số đã cho đồng biến trên khoảng π2;π
D. Hàm số đã cho nghịch biến trên khoảng π2;3π2
Câu 9:
Xét hàm số y=tan2x trên một chu kì. Trong các kết luận sau, kết luận nào đúng?
A. Hàm số đồng biến trên các khoảng 0;π4 và π4;π2
B. Hàm số đã cho đồng biến trên khoảng 0;π4, nghịch biến trên khoảng π4;π2
C. Hàm số đã cho luôn đồng biến trên khoảng 0;π2 và 0;π4
D. Hàm số đã cho nghịch biến trên khoảng 0;π4, đồng biến trên khoảng π4;π2
Câu 10:
Tìm chu kì của hàm số y = f(x) = tan2x.
A. T0=2π
B. T0=π2
C. T0=π
D. T0=4π
Câu 11:
Tìm chu kì của các hàm số sau fx=sinx+π5
B. T0=π
C. T0=π2
D. T0=π4
Câu 12:
Hàm số y=1−sin2xcos3x−1 xác định trên:
A. D=ℝ∖k2π3,k∈ℤ
B. D=ℝ∖π6+kπ3,k∈ℤ
C. D=ℝ∖kπ3,k∈ℤ
D. D=ℝ∖kπ2,k∈ℤ
Câu 13:
Tìm tập xác định của hàm số sau y = tan3x.cot5x
A. D=ℝ∖π4+kπ3,nπ5;k,n∈ℤ
B. D=ℝ∖π5+kπ3,nπ5;k,n∈ℤ
C. D=ℝ∖π6+kπ4,nπ5;k,n∈ℤ
D. D=ℝ∖π6+kπ3,nπ5;k,n∈ℤ
Câu 14:
Tìm tập xác định của hàm số y=tan2x−π4
A. D=ℝ∖π8+kπ2,k∈ℤ
B. D=ℝ∖3π8+kπ2,k∈ℤ
C. D=ℝ∖3π8+kπ,k∈ℤ
D. D=ℝ∖3π4+kπ2,k∈ℤ
Câu 15:
Tìm tập xác định của hàm số sau y=tan2x+π3
A. D=ℝ∖π3+kπ2;k∈ℤ
B. D=ℝ∖π4+kπ2;k∈ℤ
C. D=ℝ∖π12+kπ2;k∈ℤ
D. D=ℝ∖π8+kπ2;k∈ℤ
Câu 16:
Hàm số nào sau đây không chẵn, không lẻ?
A. y=sinx+tanx2cos2x
B. y=tanx−cotx
C. y=sin2x+cos2x
D. y=2−sin23x
Câu 17:
Tìm giá trị nhỏ nhất của hàm số y=tan2x-4tanx+1
A. min y = -2
B. min y = -3
C. min y = -4
D. min y = -1
Câu 18:
Trong các hàm số dưới đây có bao nhiêu hàm số là hàm số chẵn: y=cos3x,y=sinx2+1,y=tan2x,y=cotx
A. 0
B. 1
C. 2
D. 3
Câu 19:
Hàm số nào trong các hàm số sau có đồ thị nhận Oy làm trục đối xứng?
A. y=xsinx.
B. y=sinx.cos2x+tanx.
C. y=sin2020x+2019cosx.
D. y=tanx.
Câu 20:
Cho các mệnh đề sau :
(I): Hàm số y=sinxcó chu kì là π2
(II): Hàm số y=tanx có tập giá trị là D=R∖{π2+kπ,k∈Z}
(III): Đồ thị hàm số y=cosx nhận trục tung làm trục đối xứng.
(IV): Hàm số y=cotx đồng biến trên −π;0
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 2
B. 4
C. 1
Câu 21:
Tìm m để bất phương trình 3sinx−4cosx2−6sinx+8cosx≥2m−1 đúng với mọi x∈R
A. m > 0
B. m≤0
C. m < 0
D. m≤1
1156 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com