Dạng 1. Tìm giao tuyến của hai mặt phẳng sử dụng quan hệ song song có đáp án

  • 2035 lượt thi

  • 13 câu hỏi

  • 60 phút

Câu 1:

Cho hình chóp S.ABCD có đáy là hình bình hành. Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD)

Xem đáp án
Cho hình chóp S.ABCD có đáy là hình bình hành. Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD) (ảnh 1)

Ta có SABSCD=SABSAB,  CDSCDAB//CD

Suy ra SABSCD=Sx với Sx//AB//CD

Câu 3:

b) SCDMAB

Xem đáp án

b) Do MSC nên SCDMAB=M, mặt khác AB // CD

SCDMAB=My, trong đó My // AB // CD


Câu 4:

Cho tứ diện SABC. Gọi G, I lần lượt là trọng tâm của tam giác ABC và SAB. Tìm giao tuyến của mặt phẳng (AIG) và mặt phẳng (SAC)

Xem đáp án
Cho tứ diện SABC. Gọi G, I lần lượt là trọng tâm của tam giác ABC và SAB. Tìm giao tuyến của mặt phẳng (AIG) và mặt phẳng (SAC) (ảnh 1)

Gọi M là trung điểm của AB.

Do I là trọng tâm của tam giác SAB suy ra MIMS=13

Tương tự ta có MGMC=13

Suy ra MIMS=MGMBGI//SC

Từ đó ta có SACAIG=Ax, trong đó Ax // SC // GI


Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành.

a) Tìm giao tuyến của các cặp mặt phẳng (SAB) và (SCD); (SAC) và (SBD)

Xem đáp án
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. a) Tìm giao tuyến của các cặp mặt phẳng (SAB) và (SCD);  (ảnh 1)

a) Ta có SSABSCDABSAB;  CDSCDAB//CD

SABSCD=Sx trong đó Sx // AB // CD

Trong (ABCD) gọi O=ACBD, suy ra OSACSBD   1

Lại có SSACSBD          2

Từ (1) và (2), suy ra SO=SACSBD


0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận