DẠNG 4. MỐI LIÊN HỆ GIỮA TÍCH PHÂN VÀ THỂ TÍCH CỦA VẬT THỂ
16 người thi tuần này 4.6 3.2 K lượt thi 4 câu hỏi 60 phút
🔥 Đề thi HOT:
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
214 Bài toán thực tế từ đề thi Đại học có lời giải chi tiết (P1)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Chọn đáp án D
Câu 2
Lời giải
\(\sqrt x = 2 - x \Leftrightarrow x = 1.V = {V_1} + {V_2}.\)
V1 là thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi các đường \(y = \sqrt x ,y = 0,x = 1\) quay quanh trục Ox.
V2 là thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi các đường \(y = 2 - x,y = 0,x = 1\) quay quanh trục Ox.
\({\rm{V}} = \pi \int_0^1 {{\rm{xdx}}} + \pi \int_1^2 {{{(2 - {\rm{x}})}^2}} {\rm{dx}}.\) Chọn C.
Câu 3
Lời giải
\(V = {V_1} - {V_2}.\)
V1 là thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi các đường \({\rm{y}} = {\rm{f}}({\rm{x}}),{\rm{x}} = {\rm{a}},{\rm{x}} = {\rm{b}}\) quay quanh trục Ox.
V2 là thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi các đường \({\rm{y}} = {\rm{g}}({\rm{x}}),{\rm{x}} = {\rm{a}},{\rm{x}} = {\rm{b}}\) quay quanh trục \(O{\rm{x}}.\)
\({\rm{V}} = \pi \int_{\rm{a}}^{\rm{b}} {\left( {{{({\rm{f}}({\rm{x}}))}^2} - {{({\rm{g}}({\rm{x}}))}^2}} \right)} {\rm{dx}}.\) Chọn B.
Câu 4
Lời giải
\(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1 \Leftrightarrow {y^2} = {b^2}\left( {1 - \frac{{{x^2}}}{{{a^2}}}} \right) \Leftrightarrow y = \pm b\sqrt {1 - \frac{{{x^2}}}{{{a^2}}}} ,x \in [ - a;a].\)
Nhận xét: Elip nhận \({\rm{Ox}},{\rm{Oy}}\) là hai trục đối xứng.
Ta cần tính thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi các đường
\(y = b\sqrt {1 - \frac{{{x^2}}}{{{a^2}}}} ,x = - a,x = a\)quay quanh trục Ox.
\(V = \pi \int_{ - a}^a {{{\left( {b\sqrt {1 - \frac{{{x^2}}}{{{a^2}}}} } \right)}^2}} dx = \pi \int_{ - a}^a {{b^2}} \left( {1 - \frac{{{x^2}}}{{{a^2}}}} \right)dx = \left. {\pi {b^2}\left( {x - \frac{{{x^3}}}{{3{a^2}}}} \right)} \right|_{ - a}^a = \frac{{4\pi }}{3}a{b^2}\)
Chọn B.