Trắc nghiệm Giới hạn của dãy số có đáp án (phần 2)

  • 963 lượt thi

  • 32 câu hỏi

  • 22 phút


Danh sách câu hỏi

Câu 1:

Tính limn32n+1?

Xem đáp án

Đáp án D

Ta có:lim (n3-2n+1)=lim n31-2n2+1n3.

lim n3=+ và lim1-2n2+1n3= 1-0+0= 1

 Nên theo quy tắc 2, lim(n3-2n+1)=+


Câu 2:

Tính lim5nn2+1

Xem đáp án

Đáp án là B

Ta có 5n-n2+1=n25n-1+1n2

lim n2=+ và  lim5n-1+1n2=-1<0 nên lim(5n-n2+1)=- (theo quy tắc 2).


Câu 3:

Tính lim un, với un=5n2+3n-7n2

Xem đáp án

Đáp án A

Ta có :

lim un=lim5n2n2+3nn2-7n2=lim5+3n-7n2=5+0 -  0 =  5

 


Câu 4:

Tính lim un với  un=2n3-3n2+n+5n3-n2+7?

Xem đáp án

Đáp án C

Chia cả tử và mẫu của phân thức cho n3 (  là lũy thừa bậc cao nhất củan trong phân thức), ta được:

 un=2n3-3n2+n+5n3-n2+7=2-3n+1n2+5n31-1n+7n3.

 Vì lim2-3n+1n2+5n3=2 và lim1-1n+7n3=10 nên lim2n3-3n2+n+5n3-n2+7=21=2.


Câu 5:

Giới hạn của dãy số (un)  với un=n3+2n+1n4+3n3+5n2+6 bằng

Xem đáp án

Đáp án là B

Chia cả tử và mẫu của phân thức cho  n4 (n4  là bậc cao nhất của n trong phân thức), ta được

lim un=limn3+2n+1n4+3n3+5n2+6=lim1n+2n3+1n41+3n+5n2+6n3=0+0 +01+0 +0 +0=0.


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Đánh giá

5

Đánh giá trung bình

100%

0%

0%

0%

0%

Nhận xét

P

2 tháng trước

Phuong Dung

Love

Bình luận


Bình luận