Trắc nghiệm Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn (Vận dụng)

  • 751 lượt thi

  • 19 câu hỏi

  • 20 phút

Câu 1:

Cho đường tròn (O). Từ một điểm M nằm ngoài (O), vẽ các cát tuyến MCA và MBD sao cho góc CMD^ = 40o. Gọi E là giao điểm của AD và BC. Biết AEB^ = 70o, số đo cung lớn AB là:

Xem đáp án

(1). 

(2).

(3).

(1) + (2) + (3) => 2(sđ BD + sđ AC)=5800

=> sđ DB + sđ AD=2900 => sđ AB=2900

Đáp án cần chọn là: C

 

 

 

Đáp án cần chọn là: C


Câu 2:

Cho tam giác ABC nội tiếp trong đường tròn (O). Trên các cung nhỏ AB và AC lần lượt lấy điểm I, K sao cho cung AI = cung AK. Dây IK cắt các cạnh AB, AC lần lượt tại D và E

Xem đáp án

+) Ta có ADK^ là góc có đỉnh nằm trong đường tròn nên

 

+) Ta có ADI^ là góc có đỉnh nằm trong đường tròn nên

+) Ta có AEI^ là góc có đỉnh ở trong đường tròn nên

Đáp án cần chọn là: D


Câu 3:

Cho đường tròn (O) và một dây AB. Vẽ đường kính CD vuông góc với AB (D thuộc cung nhỏ AB). Trên cung nhỏ BC lấy một điểm N. Các đường thẳng CB và DN lần lượt cắt các đường thẳng AB tại E và F. Tiếp tuyến của đường tròn (O) tại N cắt các đường thẳng AB tại I. Chọn đáp án đúng.

Xem đáp án

Ta có tam giác AOB cân tại O nên dễ dàng chỉ ra được  sđAD=sđDB

Suy ra tam giác FIN cân tại I

Ta có: N1^+N3^ = 90o => N1^+C4^ = 90o

 

 = 90o

=> E1^=N1^

Do đó INE cân tại I

Đáp án cần chọn là: A


Câu 4:

Cho (O; R) có hai đường kính AB, CD vuông góc với nhau. Gọi M là điểm chính giữa cung BC. Dây AM cắt OC tại E, dây CM cắt đường thẳng AB tại N. Tính diện tích tam giác CON theo R

Xem đáp án

Xét (O) có CNA^ là góc có đỉnh bên ngoài đường tròn nên

CNB^=12 (số đo cung AC – số đo MB)

Mà số đo cung MB = 12 số đo cung AC nên CNA^=12 số đo cung MB

Lại có MCB^=12 số đo cung MB (góc nội tiếp) nên

MCB^=BNC^ => BNC cân tại B => BN = BC

Xét COB vuông cân tại O ta có

BC = OC2+OB2 =R2 nên BN = R2

Suy ra NO = NB + OB = R2 + R = R (1 + 2)

Khi đó SONC = 12. NO. CO =  (1 + 2)R. R = 2+12R2

Đáp án cần chọn là: A


Câu 5:

Từ A ở ngoài (O) vẽ tiếp tuyến AB và cát tuyến ACD. Tia phân giác BAC^ cắt BC, BD lần lượt tại M, N. Vẽ dây BF vuông góc với MN tại H và cắt CD tại E. Tam giác BMN là tam giác gì?

Xem đáp án

Xét (O) có đường thẳng AM cắt đường tròn tại I; K. Khi đó:

Mà  BAK^=CAK^ =>

Nên  

Hay BMN^=BNM^ => BMN cân tại B

Đáp án cần chọn là: C


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Có thể bạn quan tâm

Các bài thi hot trong chương

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận