Trắc nghiệm Hàm số y = ax + b có đáp án (Tổng hợp)

  • 196 lượt thi

  • 18 câu hỏi

  • 50 phút


Danh sách câu hỏi

Câu 1:

Tìm m để hàm số y = − (m2 + 1)x + m − 4 nghịch biến trên R

Xem đáp án

Hàm số bậc nhất y = ax + b nghịch biến ⇔ a < 0 ⇒ − (m2 + 1) < 0 (luôn đúng với mọi m)

Đáp án cần chọn là: B


Câu 2:

Đồ thị sau đây biểu diễn hàm số nào?

Xem đáp án


Câu 3:

Hàm số y=x+x được viết lại là:

Xem đáp án


Câu 4:

Cho hai hàm số y = f(x) và y = g(x) xác định trên R. Đặt S(x) = f(x) + g(x) và P(x) = f(x) g(x).

Xét các mệnh đề:

i) Nếu y = f(x) và y = g(x) là những hàm số chẵn thì y = S(x) và y = P(x) cũng là những hàm số chẵn

ii) Nếu y = f(x) và y = g(x) là những hàm số lẻ thì y = S(x) là hàm số lẻ và y = P(x) là hàm số chẵn

iii) Nếu y = f(x) là hàm số chẵn, y = g(x) là hàm số lẻ thì y = P(x) là hàm số lẻ

Số mệnh đề đúng là:

Xem đáp án

Xét mệnh đề i):

y = f(x) và y = g(x) là những hàm số chẵn thì

 f(x) = f(−x), g(x) = g(−x), ∀x ∈ R

Suy ra f(x) + g(x) = f(−x) + g(−x), ∀x ∈ R ⇒ S(x) = S(−x), ∀x ∈ R

f(x) g(x) = f(−x) g(−x), ∀x ∈ R ⇒ P(x) = P(−x), ∀x ∈ R

Do đó y = S(x) và y = P(x) cũng là những hàm số chẵn.

Vậy mệnh đề i) đúng.

Xét mệnh đề ii):

y = f(x) và y = g(x) là những hàm số lẻ thì

 −f(x) = f(−x), −g(x) = g(−x), ∀x ∈ R

Suy ra − (f(x) + g(x)) = f(−x) + g(−x), ∀x ∈ R ⇒ −S(x) = S(−x), ∀x ∈ R 

Do đó y = S(x) là hàm số lẻ.

Lại có f(x) g(x) = f(−x) g(−x), ∀x ∈ R ⇒ P(x) = P(−x), ∀x ∈ R nên

y = P(x) là hàm số chẵn.

Vậy mệnh đề ii) đúng.

Xét mệnh đề iii):

y = f(x) là hàm số chẵn, y = g(x) là hàm số lẻ thì f(x) = f(−x), −g(x) = g(−x), ∀x ∈ R

Suy ra −f(x) g(x) = f(−x) g(−x), ∀x ∈ R ⇒ −P(x) = P(−x), ∀x ∈ R

Nên y = P(x) là hàm số lẻ.

Vậy mệnh đề iii) đúng.

Vậy số mệnh đề đúng là 3.

Đáp án cần chọn là: C


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Đánh giá

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận