Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
19217 lượt thi 30 câu hỏi 30 phút
47365 lượt thi
Thi ngay
4780 lượt thi
12942 lượt thi
6453 lượt thi
3302 lượt thi
8116 lượt thi
19814 lượt thi
9118 lượt thi
3479 lượt thi
9245 lượt thi
Câu 1:
Trong một cuộc thi có 10 câu hỏi trắc nghiệm, mỗi câu có 4 phương án trả lời, trong đó chỉ có một phương án đúng. Với mỗi câu, nếu chọn phương án trả lời đúng thì thí sinh sẽ được cộng 5 điểm, nếu chọn phương án trả lời sai sẽ bị trừ 1 điểm. Tính xác suất để một thí sinh làm bài bằng cách lựa chọn ngẫu nhiên phương án được 26 điểm, biết thí sinh phải làm hết các câu hỏi và mỗi câu hỏi chỉ chọn duy nhất một phương án trả lời . (chọn giá trị gần đúng nhất)
A. 0,016222
B. 0,162227
C. 0,028222
D. 0,282227
An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con đường đi, từ nhà Bình tới nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn đường đi đến nhà Cường?
A. 6
B. 4
C. 10
D. 24
Câu 2:
Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giáccó các đỉnh là các đỉnh của đa giá trên. Tính xác suất để chọn được một tam giác từ tập X là tam giác cânnhưng không phải là tam giác đều.
A. 23136
B. 144136
C. 317
D. 7816
Câu 3:
Trong hệ tọa độ Oxy có 8 điểm nằm trên tia Ox và 5 điểm nằm trên tia Oy. Nối một điểm trên tia Ox và một điểm trên tia Oy ta được 40 đoạn thẳng. Hỏi 40 đoạn thẳng này cắt nhau tại bao nhiêu giao điểm nằm trong góc phần tư thứ nhất của hệ trục tọa độ xOy (Biết rằng không có bất kì 3 đoạn thẳng nào đồng quy tại 1 điểm).
A. 260
B. 290
C. 280
D. 270
Câu 4:
Trong các khẳng định sau khẳng định nào sai?
A. Không gian mẫu là tập tất cả các kết quả có thể xẩy ra của phép thử
B. Gọi P(A) là tập xác xuất của biến cố A ta luôn có 0< P(A) ≤ 1
C. Biến cố là tập con của không gian mẫu
D. Phép thử ngẫu nhiên là phép thử mà ta không biết được chính xác kết quả của nó nhưng ta có thể biết được tập tất cả các kết quả có thể xẩy ra của phép thử
Câu 5:
Có bao nhiêu số tự nhiên nhỏ hơn 1000 được lập từ các chữ số 0, 1, 2, 3, 4 ?
A. 125
B. 120
C. 100
D. 69
Câu 6:
Để chào mừng ngày nhà giáo Việt Nam 20 - 11 Đoàn trường THPT Hai Bà Trưng đã phân công ban khối: khối 10, khối 11 và khối 12 mỗi khối chuẩn bị ba tiết mục gồm một tiết mục múa, một tiết mục kịch và một tiết mục hát tốp ca. Đến ngày tổ chức ban tổ chức chọn ngẫu nhiên ba tiết mục. Tính xác xuất ba tiết mục được chọn có đủ cả ba khối và đủ cả ba nội dung.
A. 114
B. 184
C. 128
D. 956
Câu 7:
Xét bảng ô vuông gồm 4 x 4 ô vuông. Người ta điền vào mỗi ô vuông đó một trong hai số 1 hoặc -1 sao cho tổng các số trong mỗi hang và tổng các số trong mỗi cột đều bằng 0. Hỏi có bao nhiêu cách?
A. 72
B. 90
C. 80
D. 144
Câu 8:
Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 6 điểm phân biệt; trên đường thẳng b lấy 5 điểm phân biệt. Chọn ngẫu nhiên 3 điểm trong các điểm đã cho trên hai đường thẳng a và b. Tính xác xuất để 3 điểm được chọn tạo thành một tam giác.
A. 511
B. 60169
C. 211
D. 911
Câu 9:
Ba người xạ thủ A1, A2, A3 độc lập với nhau cùng nổ súng bắn vào mục tiêu. Biết rằng xác suất bắn trúng mục tiêu của A1, A2, A3 tương ứng là 0,7; 0,6 và 0,5. Tính xác suất để có ít nhất một xạ thủ bắn trúng.
A. 0,45
B. 0,21
C. 0,75
D. 0,94
Câu 10:
Có bao nhiêu cách chia 8 đồ vật khác nhau cho 3 người sao cho có một người được 2 đồ vật và hai người còn lại mỗi người được 3 đồ vật?
A. 3!C82C63
B. D.
C. A82A63
D. 3C82C63
C82C63
Câu 11:
Trong trò chơi gieo ngẫu nhiên đồng xu nhiều lần liên tiếp, hỏi phải gieo ít nhất bao nhiêu lần để xác suất được mặt ngửa nhỏ hơn 1100.
A. 7
B. 8
C. 9
D. 6
Câu 12:
Có 12 học sinh gồm 5 học sinh lớp A; 4 học sinh lớp B và 3 học sinh lớp C. Hỏi có bao nhiêu cách chọn 4 học sinh đi làm nhiệm vụ mà 4 người này không thuộc quá 2 trong 3 lớp trên?
A. 242
B. 255
C. 215
D. 220
Câu 13:
Có bao nhiêu số có 4 chữ số khác nhau được tạo thành từ các số 1,2,3,4,5?
A. A54
B. P5
C. C54
D. P4
Câu 14:
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra có ít nhất một quyển là toán bằng:
A. 3742
B. 27
C. 542
D. 121
Câu 15:
Lập số có 9 chữ số, mỗi chữ số thuộc thuộc tập hợp 1,2,3,4 trong đó chữ số 4 có mặt 4 lần, chữ số 3 có mặt 3 lần, các chữ số còn lại có mặt đúng một lần. Số các số lập được là:
A. 362880
B. 120860
C. 2520
D. 15120
Câu 16:
Đề thi trắc nghiệm môn Toán gồm 50 câu hỏi, mỗi câu có 4 phương án trả lời trong đó chỉ có một phương án trả lời đúng. Mỗi câu trả lời đúng được 0,2 điểm. Một học sinh không học bài nên mỗi câu trả lời đều chọn ngẫu nhiên một phương án. Xác suất để học sinh đó được đúng 5 điểm là:
Câu 17:
Có bao nhiêu số tự nhiên gồm 7 chữ số thỏa mãn số đó có 3 số chữ chẵn và số đứng sau lớn hơn số đứng trước.
A. 7200
B. 50
C. 20
D. 2880
Câu 18:
Trong một kì thi. Thí sinh được phép thi 3 lần. Xác suất lần đầu vượt qua kì thi là 0,9. Nếu trượt lần đầu thì xác suất vượt qua kì thi lần hai là 0,7. Nếu trượt cả hai lần thì xác suất vượt qua kì thi ở lần thứ ba là 0,3. Xác suất để thí sinh thi đậu là
A. 0,97
B. 0,79
C. 0,797
D. 0,979
Câu 19:
Có bao nhiêu số chẵn có 4 chữ số đôi một khác nhau và lớn hơn 5000?
A .1232.
B.1120.
C.1250.
D.1288 .
Câu 20:
Xếp ngẫu nhiên 7 học sinh nam và 3 học sinh nữ ngồi xung quanh một bàn tròn. Xác suất để các học sinh nữ luôn ngồi cạnh nhau là:
A. 310
B. 112
C. 532
D. 542
Câu 21:
Danh sách lớp của bạn Nam đánh số từ 1 đến 45. Nam có số thứ tự là 21. Chọn ngẫu nhiên một bạn trong lớp để trực nhật. Tính xác suất để chọn được bạn có số thứ tự lớn hơn số thứ tự của Nam.
A. 75
B. 145
C. 45
D. 2445
Câu 22:
Một thầy giáo có 12 cuốn sách đôi một khác nhau, trong đó có 5 cuốn sách văn học, 4 cuốn sách âm nhạc và 3 cuốn sách hội họA. Thầy muốn lấy ra 6 cuốn và đem tặng cho 6 học sinh mỗi em một cuốn. Thầy giáo muốn rằng sau khi tặng xong, mỗi một trong 3 thể loại văn học, âm nhạc, hội họa đều còn lại ít nhất một cuốn. Hỏi thầy có tất cả bao nhiêu cách tặng?
A. 665280
B. 85680
C.119
D. 579600
Câu 23:
Một mạch điện gồm 4 linh kiện như hình vẽ, trong đó xác suất hỏng của từng linh kiện trong một khoảng thời gian t nào đó tương ứng là 0,2; 0,1; 0,05 và 0,02. Biết rằng các linh kiện làm việc độc lập với nhau và các dây luôn tốt. Tính xác suất để mạng điện hoạt động tốt trong một khoảng thời gian t.
A. 0,37
B. 0,670
C. 0,78008
D. 0,8
Câu 24:
Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau?
A. 1.
B. 24.
C. 44.
D. 42.
Câu 25:
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ?
A.2448
B.3600
C.2324
D.2592
Câu 26:
Xếp ngẫu nhiên 3 người đàn ông, hai người đàn bà và một đứa bé vào ngồi 6 cái ghế xếp thành hàng ngang. Xác suất sao cho đứa bé ngồi giữa hai người đàn bà là
A. 16
B. 15
C. 130
D. 115
Câu 27:
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên có ba chữ số ?
A.261
C. 102
D. 216
Câu 28:
Gieo đồng thời hai con súc sắc. Xác suất để số chấm trên mặt xuất hiện của cả hai con súc sắc đều là số chẵn bằng
A. 14
C. 136
D. 16
Câu 29:
Trong một hòm phiếu có 9 lá phiếu ghi các số tự nhiên từ 1 đến 9 (mỗi lá ghi một số, không có hai lá phiếu nào được ghi cùng một số). Rút ngẫu nhiên cùng một lúc hai lá phiếu. Tính xác suất để tổng của hai số ghi trên hai lá phiếu rút được là một số lẻ lớn hơn hoặc bằng 15.
A. 518
B. 16
C. 112
D. 19
3 Đánh giá
100%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com