Trắc nghiệm Nhị thức Niu tơn có đáp án (Phần 2)

  • 1112 lượt thi

  • 12 câu hỏi

  • 10 phút


Danh sách câu hỏi

Câu 1:

Trong khai triển nhị thức a+2n+6,n. Có tất cả 17 số hạng. Vậy n bằng:

Xem đáp án

Trong khai triển a+2n+6,n có tất cả n+6 +1 = n +7 số hạng.

Do đó n+7=17n=10.

Chọn đáp án C


Câu 2:

Tìm hệ số của x12 trong khai triển 2xx210.

Xem đáp án

Theo khai triển nhị thức Niu-tơn, ta có

2xx210=k=010C10k.2x10k.x2k=k=010C10k.210k.(1)k.x10k+2k=k=010C10k.210k.(1)k.x10+k.

Hệ số của x12 ứng với 10+k=12k=2 

Hệ số cần tìm C10228.

Chọn đáp án B


Câu 3:

Tìm số hạng chứa x3 trong khai triển x+12x9.

Xem đáp án

Theo khai triển nhị thức Niu-tơn, ta có

x+12x9=k=09C9k.x9k.12xk=k=09C9k.12k.x92k.

Hệ số của x3 ứng với 92k=3k=3 

Vậy số hạng cần tìm 18C93x3. 

Chọn đáp án B.


Câu 4:

Tìm số hạng đứng giữa trong khai triển x3+xy21.

Xem đáp án

Theo khai triển nhị thức Niu-tơn, ta có

x3+xy21=k=021C21k.x321k.xyk=k=021C21k.x633k.xk.yk=k=021C21k.x632k.yk.

Suy ra khai triển x3+xy21 có 22 số hạng nên có hai số hạng đứng giữa là số hạng thứ 11 (ứng với k= 10) và số hạng thứ 12 (ứng với k =11).

Vậy hai số hạng đứng giữa cần tìm là C2110x43y10; C2111x41y11.

Chọn đáp án D.


Câu 5:

Tìm hệ số của x5 trong khai triển Px=x12x5+x21+3x10.

Xem đáp án

* Theo khai triển nhị thức Niu-tơn, ta có

x12x5=x.k=05C5k.15- k2xk=k=05C5k.2k.xk+1.

Suy ra, số hạng chứa x5 tương ứng với k+ 1=5k=4.

* Tương tự, ta có x21+3x10=x2.l=010C10l.110- l.3xl=l=010C10l.3l.xl+2.

Suy ra, số hạng chứa x5 tương ứng với l+2=5l=3.

Vậy hệ số của x5 cần tìm P(x)  là C54.24+C103.33=3320.

Chọn đáp án C.


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Đánh giá

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận