Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 1)
39 người thi tuần này 4.6 9.3 K lượt thi 29 câu hỏi 60 phút
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án D
Phương pháp:
Đưa các phương trình về dạng phương trình tích.
Sử dụng các phương trình lượng giác cơ bản \[\sin x = a;\cos x = a,\tan x = b,\cot x = b\] với \[ - 1 \le a \le 1\].
Cách giải:
Đáp án A: \[{\sin ^2}x + \sin x - 6 = 0 \Leftrightarrow \left( {\sin x + 3} \right)\left( {\sin x - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\sin x = - 3\left( {VN} \right)\\\sin x = 2\;\left( {VN} \right)\end{array} \right.\].
Nên loại A.
Đáp án B: \[\cos x = \frac{\pi }{2}\] vô nghiệm vì \[\frac{\pi }{2} > 1\], do đó loại B.
Đáp án C: \[{\cot ^2}x - \cot x + 5 = 0 \Leftrightarrow {\left( {\cot x - \frac{1}{2}} \right)^2} + \frac{{19}}{4} = 0\] (vô nghiệm) nên loại C.
Đáp án D: \[\begin{array}{l}2\cos 2x - \cos x - 3 = 0 \Leftrightarrow 2\left( {2{{\cos }^2}x - 1} \right) - \cos x - 3 = 0\\ \Leftrightarrow 4{\cos ^2}x - \cos x - 5 = 0 \Leftrightarrow \left[ \begin{array}{l}\cos x = - 1\\\cos x = \frac{5}{4}\left( {VN} \right)\end{array} \right. \Rightarrow x = \pi + k2\pi \left( {k \in \mathbb{Z}} \right)\end{array}\]
Lời giải
Đáp án C
Phương pháp
Sử dụng kiến thức về chu kì tuần hoàn của hàm số \[y = \sin x\].
Cách giải
Hàm số \[y = \sin x\] tuần hoàn với chu kì \[T = 2\pi \].
Lời giải
Đáp án D
Phương pháp
Sử dụng khai triển nhị thức Niu-ton: \[{\left( {a - b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \]
Từ đó tìm hệ số của \[{x^3}\] trong khai triển.
Cách giải:
Ta có: \[{\left( {1 - 2x} \right)^8} = \sum\limits_{k = 0}^8 {C_8^k{{\left( { - 2x} \right)}^k}} = \sum\limits_{k = 0}^8 {C_8^k{{\left( { - 2} \right)}^k}} {x^k}\].
Số hạng chứa \[{x^3}\] ứng với \[k = 3\].
Suy ra hệ số cần tìm là: \[C_8^3.{\left( { - 2} \right)^3} = - 448\].
Lời giải
Đáp án D
Phương pháp
Sử dụng biểu thức tọa độ của phép vị tự tâm \[I\left( {a;b} \right)\] biến \[M\left( {x;y} \right)\] thành \[M'\left( {x';y'} \right)\] thì \[\left\{ \begin{array}{l}x' = kx + \left( {1 - k} \right)a\\y' = ky + \left( {1 - k} \right)b\end{array} \right.\]
Sử dụng biểu thức tọa độ của phép tịnh tiến theo véctơ \[\overrightarrow v = \left( {a;b} \right)\] biến \[M\left( {x;y} \right)\] thành \[M'\left( {x';y'} \right)\] thì \[\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\].
Cách giải
Gọi \[M\left( {x;y} \right) \in d:3x - y - 3 = 0\]
Gọi \[M'\left( {x';y'} \right)\] là ảnh của \[M\left( {x;y} \right)\] qua phép vị tự tâm \[I\left( {2;3} \right)\] tỉ số \[k = - 1\].
Khi đó ta có \[\left\{ \begin{array}{l}x' = - x + \left( {1 - \left( { - 1} \right)} \right).2\\y' = - y + \left( {1 - \left( { - 1} \right)} \right).3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - x' + 4\\y = - y' + 6\end{array} \right.\] nên \[M\left( { - x' + 4; - y' + 6} \right)\]
Mà \[M\left( { - x' + 4; - y' + 6} \right) \in d:3x - y - 3 = 0\] nên ta có \[\begin{array}{l}3\left( { - x' + 4} \right) - \left( { - y' + 6} \right) = 0 \Leftrightarrow - 3x' + 12 + y' - 6 - 3 = 0\\ \Leftrightarrow - 3x' + y' + 3 = 0 \Leftrightarrow 3x' - y' - 3 = 0\end{array}\]
Do đó, ảnh của đường thẳng \[d:3x - y - 3 = 0\] qua phép vị tự tâm \[I\left( {2;3} \right)\] tỉ số \[k = - 1\] là đường thẳng \[d':3x - y - 3 = 0\] .
Ta tìm ảnh của đường thẳng d’ qua phép tịnh tiến theo véctơ \[\overrightarrow v \left( {1;3} \right)\].
Gọi \[N\left( {{x_1};{y_1}} \right) \in d':3x - y - 3 = 0\] và \[N'\left( {{x_2};{y_2}} \right)\] là ảnh của qua \[{T_{\overrightarrow v }}\].
Khi đó ta có: \[\left\{ \begin{array}{l}{x_2} = {x_1} + 1\\{y_2} = {y_1} + 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2} - 1\\{y_1} = {y_2} - 3\end{array} \right. \Rightarrow N\left( {{x_2} - 1;{y_2} - 3} \right)\].
Thay tọa độ \[N\left( {{x_2} - 1;{y_2} - 3} \right)\] vào phương trình đường thẳng \[d':3x - y - 3 = 0\] ta được: \[3\left( {{x_2} - 1} \right) - \left( {{y_2} - 3} \right) - 3 = 0 \Leftrightarrow 3{x_2} - {y_2} - 3 = 0\]
Vậy ảnh của đường thẳng d’ qua phép tịnh tiến theo véctơ \[\overrightarrow v \left( {1;3} \right)\] là đường thẳng \[{d_1}:3x - y - 3 = 0\].
Hay đường thẳng cần tìm là: \[{d_1}:3x - y - 3 = 0\].
Lời giải
Đáp án B
Phương pháp
Sử dụng kiến thức về tổ hợp và hai quy tắc đếm cơ bản.
Cách giải
TH1: Đội tuyển gồm 1 học sinh khối 10 và 9 học sinh của 2 khối 11 và khối 12.
Số cách chọn là: \[C_5^1.C_{10}^9 = 50\] cách.
TH2: Đội tuyển gồm 2 học sinh khối 10 và 8 học sinh của 2 khối 11 và khối 12.
Số cách chọn là: \[C_5^2.C_{10}^8 = 450\] cách.
Vậy có \[450 + 50 = 500\] cách chọn thỏa mãn yêu cầu đề bài.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
1868 Đánh giá
50%
40%
0%
0%
0%