Thi Online Bài tập chuyên đề toán 11 Bài 1: Đại cương về đường thẳng và mặt phẳng có đáp án
Dạng 2. Tìm giao điểm của đường thẳng và mặt phẳng có đáp án
-
795 lượt thi
-
15 câu hỏi
-
60 phút
Câu 1:
Cho tứ diện ABCD. Gọi I, J lần lượt là các điểm nằm trên AB, AD với I là trung điểm AB và . Tìm giao điểm của IJ và (BCD)
Cho tứ diện ABCD. Gọi I, J lần lượt là các điểm nằm trên AB, AD với I là trung điểm AB và . Tìm giao điểm của IJ và (BCD)

Trong tam giác ∆ABC có:
Do đó IJ và BD không song song theo định lý Ta-lét.
Ta có
Lại có
Trong mặt phẳng (ABD) gọi
VậyCâu 2:
Cho tam giác BCD và điểm A không thuộc (BCD). Gọi K là trung điểm của AD và G là trọng tâm tam giác ABC. Tìm giao điểm của đường thẳng GK và (BCD)
Cho tam giác BCD và điểm A không thuộc (BCD). Gọi K là trung điểm của AD và G là trọng tâm tam giác ABC. Tìm giao điểm của đường thẳng GK và (BCD)

Trong tam giác ∆AMD có
Nên GK và MD không song song theo định lý Ta-lét.
Ta có: và , suy ra trong
Vậy
Câu 3:
Cho bốn điểm A, B, C, D không đồng phẳng. Gọi M, N lần lượt là trung điểm AC, BC. Trên đoạn BD lấy điểm P sao cho BP = 2PD.
a) Tìm giao điểm của CD và (MNP)
Cho bốn điểm A, B, C, D không đồng phẳng. Gọi M, N lần lượt là trung điểm AC, BC. Trên đoạn BD lấy điểm P sao cho BP = 2PD.
a) Tìm giao điểm của CD và (MNP)

a) Trong ∆BCD có
Do đó NP và CD không song song theo định lý Ta-lét.
Ta có và
Trong
VậyCâu 4:
b) Tìm giao tuyến của hai mặt phẳng (MNP) và (ACD)
b) Tìm giao tuyến của hai mặt phẳng (MNP) và (ACD)
b) Xét hai mặt phẳng (MNP) và (ACD) có
Lại có
Từ (1) và (2) suy ra
Câu 5:
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm của SC.
a) Tìm giao điểm I của AM với (SBD). Chứng minh IA = 2.IM
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm của SC.
a) Tìm giao điểm I của AM với (SBD). Chứng minh IA = 2.IM

a) Trong mặt phẳng (ABCD) gọi
Ta có ; (SAC) và (SBD) có S chung
Lại có
Nên
Trong mặt phẳng
Vậy
Xét ∆SAC có AM, SO là hai đường trung tuyến nên I là trọng tâm ∆SAC, suy ra theo tính chất trọng tâm ta có AI = 2IM
Bài thi liên quan:
Dạng 1: Tìm giao tuyến của hai mặt phẳng có đáp án
25 câu hỏi 60 phút
Các bài thi hot trong chương:
( 604 lượt thi )
( 1.2 K lượt thi )
( 1.1 K lượt thi )
( 1.1 K lượt thi )
Đánh giá trung bình
0%
0%
0%
0%
0%