Trắc nghiệm Giới hạn của hàm số có đáp án (Vận dụng)

  • 263 lượt thi

  • 10 câu hỏi

  • 30 phút


Danh sách câu hỏi

Câu 2:

Cho hàm số f(x)=x2+2x+4x22x+4. Khẳng định nào sau đây là đúng?

Xem đáp án

f(x)=x2+2x+4x22x+4

Ta có

limx+f(x)=limx+(x2+2x+4x22x+4)=limx+x2+2x+4x22x+4x2+2x+4+x22x+4x2+2x+4+x22x+4=limx+x2+2x+4x22x+4x2+2x+4+x22x+4=limx+4xx1+2x+4x2+x12x+4x2=limx+41+2x+4x2+12x+4x2=2

limxf(x)=limxx2+2x+4x22x+4=limxx2+2x+4x22x+4x2+2x+4+x22x+4x2+2x+4+x22x+4=limxx2+2x+4x22x+4x2+2x+4+x22x+4=limx4xx2+2x+4+x22x+4=limx4xx1+2x+4x2x12x+4x2=limx41+2x+4x212x+4x2=411=2

Đáp án cần chọn là: D


Câu 3:

Giá trị của giới hạn limx+x2+xx3x23

Xem đáp án

limx+x2+xx3x23=limx+x2+xx+xx3x23=limx+xx2+x+x+x2x2+xx3x23+x3x223=limx+11+1x+1​  +​  11+11x3+(11x)23​  =12+13=56

Đáp án cần chọn là: A


Câu 4:

Tính limxx3x+22x3+x21

Xem đáp án

limxx3x+22x3+x21=limxx2(3x+2)2x3+x21=limx3x3+2x2)2x3+x21=limx3+2x2+1x1x3=32

Đáp án cần chọn là: A


Câu 5:

Tính limx01+2x.1+3x3.1+4x41x

Xem đáp án

1+2x.1+3x3.1+4x41=1+2x1+2x+1+2x.1+3x31+2x.1+3x3+1+2x.1+3x3.1+4x41=1+2x1+1+2x1+3x31+1+2x.1+3x3.1+4x41limx01+2x.1+3x3.1+4x41x=limx01+2x1x+limx01+2x.1+3x31x+limx01+2x.1+3x3.1+4x41x

Tính 

limx01+2x1x=limx01+2x11+2x+1x1+2x+1=limx02xx1+2x+1=limx021+2x+1=21+1=1

limx01+2x.1+3x31x=limx01+2x.1+3x311+3x32+1+3x3+1x1+3x32+1+3x3+1=limx01+2x.3xx1+3x32+1+3x3+1=limx031+2x1+3x32+1+3x3+1=3.11+1+1=1

limx01+2x.1+3x3.1+4x41x=limx01+2x.1+3x3.1+4x411+4x43+1+4x42+1+4x4+1x1+4x43+1+4x42+1+4x4+1=limx01+2x.1+3x3.4xx1+4x43+1+4x42+1+4x4+1=limx041+2x.1+3x3.1+4x43+1+4x42+1+4x4+1=4.1.11+1+1+1=1

Vậy limx01+2x.1+3x3.1+4x41x=1+1+1=3

Đáp án cần chọn là: D


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Đánh giá

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận