Trắc nghiệm Phương pháp quy nạp toán học có đáp án

  • 873 lượt thi

  • 17 câu hỏi

  • 18 phút


Danh sách câu hỏi

Câu 1:

Chứng minh rằng với mọi số nguyên n, ta có:

 1.4+2.7++n3n+1=nn+12   (1)

Xem đáp án

* Với n =  1:

  Vế trái của (1) =  1.4 = 4;  vế phải của (1) = 1.( 1+1)2 = 4.

 Suy ra Vế trái của (1) = Vế phải của (1).  Vậy (1) đúng với n = 1.

* Giả sử (1) đúng với n= k. Có nghĩa là ta có: 1.4+2.7++k3k+1=kk+12 2

Ta phải chứng minh (1) đúng với n = k + 1. Có nghĩa ta phải chứng minh:

1.4+2.7++k3k+1+k+13k+4=k+1k+22

Thật vậy 1.4+2.7++k3k+1=kk+12+k+13k+4=kk+12+k+13k+4 

=(k+1).  [k.(k+1)​   +3k+​   4]=(k+1).(k2+​​​4k+4)  =k+1k+22(đpcm).

Vậy (1) đúng với n = k + 1. Do đó theo nguyên lí quy nạp, (1) đúng với mọi số nguyên dương n.


Câu 2:

Với mỗi số nguyên dương n, gọi un  = 9n  - 1. Chứng minh rằng với mọi số nguyên dương n thì un luôn chia hết cho 8.

Xem đáp án

* Ta có u1=911=8 chia hết cho 8 (đúng với n = 1).

* Giả sử uk=9k1 chia hết cho 8.

Ta cần chứng minh uk+1=9k+11 chia hết cho 8.

Thật vậy, ta có uk+1=9k+11=9.9k1=99k1+8=9uk+8.

9uk và 8 đều chia hết cho 8, nên uk+1 cũng chia hết cho 8.

Vậy với mọi số nguyên dương n thì un chia hết cho 8.


Câu 3:

Chứng minh rằng với mọi số tự nhiên n2, ta luôn có: 2n +1 >  2n + 3   (*)

Xem đáp án

* Với n = 2 ta có 22+1>2.2+38>7 (đúng).

Vậy (*) đúng với n= 2 .

 * Giả sử với n = k ,k2 thì (*) đúng, có nghĩa ta có: 2k+1 >  2k + 3(1).

* Ta phải chứng minh (*) đúng với n = k + 1, có nghĩa ta phải chứng minh:

2k+2>2(k+1)+3

Thật vậy, nhân hai vế của (1) với 2 ta được:

2.2k+1>22k+32k+2>4k+6>2k+5.

 ( vì 4k + 6 >  4k +  5 >  2k +  5 )

Hay 2k+2 > 2 (k+1)+  3

Vậy  (*) đúng với n = k + 1 .

Do đó theo nguyên lí quy nạp, (*) đúng với mọi số nguyên dương 2


Câu 4:

Tìm công thức tính số hạng tổng quát un theo n của dãy số sau u1=3un+1=un+2

Xem đáp án

Ta có:

u2=u1+2=3+2=5. 

u3=u2+2=5+2=7. 

u4=u3+2=7+2=9. 

u5=u4+2=9+2=11. 

Từ các số hạng đầu trên, ta dự đoán số hạng tổng quát un có dạng:

un=2n+1   n1 

Ta dùng phương pháp chứng minh quy nạp để chứng minh công thức (*)  đúng.

Với n =1 ; u1 =2.1 +1 = 3 (đúng). Vậy (*) đúng với n =1

Giả sử (*)  đúng với n =k.  Có nghĩa ta có: uk = 2k +1 (2)

Ta cần chứng minh (*)  đúng với n = k+1 - có nghĩa là ta phải chứng minh:

uk+1 = 2(k+1)+1= 2k + 3

Thật vậy từ hệ thức xác định dãy số và theo (2) ta có:

uk+1 = uk +2 = 2k +1 +2 = 2k + 3

Vậy (*) đúng khi n = k+1 .

Kết luận (*) đúng với mọi số nguyên dương n.

Đáp án B


Câu 5:

Xét tính tăng giảm của dãy số (un) biết: un=  1n  2

Xem đáp án

Xét hiệu:  

un+1un=1n+121n2=1n+11n=1n(n+1)<0  n*

Kết luận dãy số (un) là dãy số giảm.

Chọn đáp án B


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Đánh giá

4

Đánh giá trung bình

0%

100%

0%

0%

0%

Nhận xét

N

4 tuần trước

Nguyễn Văn Hùng

Bình luận


Bình luận