Trắc nghiệm Toán 10 (có đáp án): Tổng hợp câu hay và khó chương 3 - Phần 1

  • 587 lượt thi

  • 15 câu hỏi

  • 15 phút


Danh sách câu hỏi

Câu 1:

Hỏi có bao nhiêu giá trị m nguyên trong đoạn [0; 2017] để phương trình x2-4x-5-m=0 có hai nghiệm phân biệt?

Xem đáp án

PT: x2-4x-5-m=0x2-4x-5=m1

Số nghiệm phương trình (1) bằng số giao điểm của đồ thị hàm số 

y=x2-4x-5P và đường thẳng y=m (cùng phương Ox)

Xét hàm số y=x2-4x-5P1 có đồ thị như hình 1.

 

Xét hàm số y=x2-4x-5P2 là hàm số chẵn nên có đồ thị nhận Oy làm trục đối xứng.

Mà y=x2-4x-5=x2-4x-5 nếu x0

Suy ra đồ thị hàm số P2 gồm hai phần:

Phần 1: Giữ nguyên đồ thị hàm số P1 phần bên phải Oy.

Phần 2: Lấy đối xứng phần 1 qua trục Oy.

Ta được đồ thị P2 như hình 2.

Xét hàm số y=x2-4x-5P, ta có: x24x5   (y0)x24x5   (y<0)

Suy ra đồ thị hàm số (P) gồm hai phần:

Phần 1: Giữ nguyên đồ thị hàm số P2 phần trên Ox.

Phần 2: Lấy đối xứng đồ thị hàm số P2 phần dưới Ox qua trục Ox.

Ta được đồ thị (P) như hình 3.

Quan sát đồ thị hàm số (P) ta có:

Phương trình |x2 – 4 |x| − 5| − m = 0 (1) có hai nghiệm phân biệt m>9m=0

Mà mZm0;2017m0;10;11;12;...;2017

Vậy có 2009 giá trị nguyên của m thỏa mãn.

Đáp án cần chọn là: C


Câu 2:

Tìm m để phương trình x2-mx+m2-3=0 có hai nghiệm x1, x2 là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 2 là

Xem đáp án

Phương trình x2-mx+m2-3=0 có hai nghiệm x1, x2 là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 2 khi và chỉ khi:

Δ=m24m2+120S=x1+x2=m>0P=x1.x2>0x12+x22=43<m4m>0x1+x222x1x2=4

3<m2m22m23=43<m2m2=2m

Đáp án cần chọn là: D


Câu 3:

Tất cả các giá trị của tham số m để phương trình x2+1x22mx+1x+1=0 có nghiệm là:

Xem đáp án

Ta có: x2+1x22mx+1x+1=0

x+1x22mx+1x1=0  (1)

Đặt x+1x=t,t2 ta được t22mt1=0   (2)

Phương trình (2) luôn có hai nghiệm t1<0<t2 do a,c=-1<0a  phương trình (1) có nghiệm khi và chỉ khi phương trình (2) có ít nhất một nghiệm t sao cho t2, hay ít nhất một trong hai số 2; −2 phải nằm giữa hai nghiệm t1,t2 hay f(2)0f(2)034m03+4m0m34m34

 

Đáp án cần chọn là: B


Câu 4:

Tìm tất cả các giá trị thực của m để phương trình x24x+6+3m=0 có nghiệm thuộc đoạn 1;3:

Xem đáp án

Ta có: x2-4x+6+3m=03m=-x2+4x-6

Số nghiệm của phương trình x2-4x+6+3m=0 là số giao điểm của đường thẳng y=3m và parabol y=-x2+4x-6

Parabol y=-x2+4x-6 có hoành độ đỉnh x=2-1;3, hệ số a=-1<0 nên đồng biến khi x<2 và nghịch biến khi x>2.

Bảng biến thiên của hàm số y=-x2+4x-6 trên đoạn -1;3:

 

Từ bảng biến thiên ta thấy, nếu phương trình có nghiệm trên đoạn -1;3 thì đường thẳng y=3m phải cắt parabol tại ít nhất 1 điểm có hoành độ thuộc đoạn -1;3.

Phương trình có nghiệm thuộc đoạn -1;3-113m-2113m23

Đáp án cần chọn là: B


Câu 5:

Xác định m để phương trình m=x2-6x-7 có 4 nghiệm phân biệt.

Xem đáp án

m=x2-6x-7 là phương trình hoành độ giao điểm của đường thẳng y = m và đồ thị (C): y=x2-6x-7

Vẽ (P): y=x2-6x-7, lấy đối xứng phần phía dưới Ox của (P) lên trên Ox và xóa đi phần phía dưới Ox (vì y=x2-6x-7,xR), ta được đồ thị (C).

Dựa vào đồ thị: phương trình m=x2-6x-7 có 4 nghiệm phân biệt khi m0;16.

Đáp án cần chọn là: B


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Đánh giá

5

Đánh giá trung bình

100%

0%

0%

0%

0%

Nhận xét

M

3 tháng trước

Minh Nguyễn

hệ thống làm bài trắc nghiệm em thấy rất tuyệt vời

Bình luận


Bình luận