Đăng nhập
Đăng ký
8839 lượt thi 51 câu hỏi 60 phút
Câu 1:
Giá trị nào của m thì hàm số y=x+mx-2 nghịch biến trên từng khoảng xác định:
A. m<-2
B. m≤-2
C. m>-2
D. m≥-2
Câu 2:
Khoảng nghịch biến của hàm số y=13x3-x2-3x+53 là:
A. -∞;-1
B. -1;3
C. 3;+∞
D. -∞;-1∪3;+∞
Câu 3:
Trong các hàm số sau, hàm số nào đồng biến trên R:
A. y=x3+3x2+3x+2008
B. y=x4+x2+2008
C. y=cot x
D. y=x+1x-2
Câu 4:
Tìm m để phương trình có 2 nghiệm: 2x3-9x2+12x=m
B. 4<m<5
C. m=5
D. m=0
Câu 5:
Cho hàm số y=m-2n-3x+5x-m-n. Với giá trị nào của thì đồ thị hàm số nhận hai trục tọa độ là tiệm cận?
A. m;n=1;1
B. m;n=1;-1
C. m;n=-1;1
D. Không tồn tại m,n
Câu 6:
Cho hàm số y=x3-6x2+9x có đồ thị (C), phương trình đường thẳng đi qua hai điểm cực đại, cực tiểu của (C) là:
A. y=2x+6
B. y=2x-6
C. y=-2x+6
D. y=3x
Câu 7:
Cho phương trình:23sinx+cosx=sin2x+3.Tổng
tất cả các nghiệm của phươngtrình trong khoảng
-2π;2π là:
A. -2π
B. -π
C. π
D. 0
Câu 8:
Tìm các điểm cố định của họ đồ thị Cm có phương trình sau:y= m-1x-2m+1
A.A1;-1
B. A2;1
C. A2;-1
D. A1;2
Câu 9:
Cho phương trình sin 2x+1= 6 sin x+ cos 2x. Chọn phát
biểu sai trong các phát biểu dưới đây:
A.Phương trình chỉ có 1 họ nghiệm dạng x=a+kπ, k∈ℤ
B. Có 2 điểm biểu diễn nghiệm của phương trình trên đường tròn lượng giác
C. Tổng tất cả các nghiệm của phương trình trong khoảng (-π;π] là 0
D. Tổng tất cả các nghiệm của phương trình trong khoảng là 0
Câu 10:
Giá trị m để đường thẳng y=2x+m cắt đường cong y=x+1x-1 tại hai điểm A, B phân biệt sao cho đoạn AB ngắn nhất là
A.m≠-1
B. m=-1
C. m<-1
D. ∀m∈ℝ
Câu 11:
Cho hàm số y=ax3+bx2+cx+d có bảng biến thiên:
Cho các mệnh đề:
(1) Hệ số b < 0
(2) Hàm số có yCD=2; yCT=-2
(3) y''(0) < 0
(4) Hệ số c = 0, d = 1
Có bao nhiêu mệnh đề đúng:
A. 1
B. 2
C. 3
D. 4
Câu 12:
Cho tập X = {0; 1; 2; 3; 4; 5; 6; 7}. Có thể lập được
bao nhiêu số n gồm 5 chữ số khác nhau đôi một lấy từ
X, biết trong 3 chữ số đầu tiên phải có mặt chữ số 1.
A. 3000
B. 2280
C. 2000
D. 1750
Câu 13:
Với điều kiện nào của a để y=2a-1x là hàm số mũ
A.a∈12;1∪1;+∞
B.a∈12;+∞
C. a > 1
D. a≠0
Câu 14:
Cho ba phương trình, phương trình nào có tập nghiệm 12;2?
A. Chỉ (I)
B. Chỉ (II)
C. Chỉ (III)
D. Cả (I), (II) và (III)
Câu 15:
Cho n = 6 tính giá trị của: Cn02+Cn12+Cn32+...+Cnn2
A. 924
B. 876
D. 512
Câu 16:
Số nghiệm của hệ phương trình y=1+log2xxy=64 là:
A. 0
B. 1
C. 2
D. 3
Câu 17:
Một số ngân hàng lớn trên cả nước vừa qua đã thay đổi liên tục lãi suất tiền gửi tiết kiệm. Bác Minh gửi số tiền tiết kiệm ban đầu là 10 triệu đồng với lãi suất 0,8%/ tháng. Chưa đầy một năm, thì lãi suất tăng lên 1,2%/ tháng , trong nửa năm tiếp theo và bác Minh đã tiếp tục gửi; sau nửa năm đó lãi suất giảm xuống còn 0,9%/ tháng, bác Minh tiếp tục gửi thêm một số tháng tròn nữa, khi rút tiền bác Minh được cả vốn lẫn lãi là 11279163,75 đồng ( chưa làm tròn ). Hỏi bác Minh đã gửi tiết kiệm trong bao nhiêu tháng.
A. 10 tháng
B. 9 tháng
C. 11 tháng
D. 12 tháng
Câu 18:
Hàm số fx=x-2x+5-3, x≠4ax - 52 , x = 4liên tục tại x = 4 khi:
A. a = 3
B.a = 2
C. a = 0
D. a = 1
Câu 19:
Phương trình 23x-6.2x-123x-1+122x=1 có bao nhiêu nghiệm ?
A. 2
B. 3
C. 4
D. 1
Câu 20:
Cho hàm số y=mx2+6x-2x+2. Xác định m để hàm số có y'≤0,∀x∈1;+∞
A. m<145
B. m<-145
C. m < 3
D. m < - 3
Câu 21:
Thể tích vật thể tròn xoay sinh ra bởi hình elip x2a2+y2b2=1 khi elip này quay xung quanh trục Ox là: .
A. 6
B. 13
C. 43πab2
D. 22
Câu 22:
F(x) là nguyên hàm của hàm số fx=x3+x thỏa .F1=0, Fx=x4a+x2b-3cTính S = a + b + c ?
A. 10
B. 12
C. 14
D. 16
Câu 23:
Cho tích phân ∫-11dx1+x+1+x2=a. Tính S=ai2018+ai2000 . Chọn đáp án đúng:
A. 3
C. 0
Câu 24:
Nguyên hàm của hàm I=∫1-x5x1+x5dx có dạng a ln x5+b ln1+x5+C. Khi đó S = 10a + b bằng
Câu 25:
Cho hàm số y = f(x) có đạo hàm liên tục trên [1;2] thỏa mãn ∫12f'(x)dx=10 và ∫12f'(x)f xdx=ln2. Biết rằng fx>0 ∀x∈1;2. Tính f(2)
A. f(2) = 10
B. f(2) = - 20
C. f(2) = - 10
D. f(2) = 20
Câu 26:
Tính tích phân I=∫121xx+12dt=ln a+b. Khi đó S = a +2b bằng:
A. 23
B. -23
C. 1
D. - 1
Câu 27:
Một tàu lửa đang chạy với vận tốc 200m/s thì người lái tàu đạp phanh; từ thời điểm đó, tàu chuyển động chậm dần đều với vận tốc v(t)=200 - 20t m/s Trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, tàu còn di chuyển được quãng đường là:
A. 500 m
B. 1000 m
C. 1500 m
D. 2000 m
Câu 28:
Một mảnh vườn toán học có dạng hình chữ nhật, chiều dài là 16m và chiều rộng là 8m. Các nhà Toán học dùng hai đường parabol, mỗi parabol có đỉnh là trung điểm của một cạnh dài và đi qua 2 mút của cạnh dài đối diện; phần mảnh vườn nằm ở miền trong của cả hai parabol (phần gạch sọc như hình vẽ minh họa) được trồng hoa Hồng. Biết chi phí để trồng hoa Hồng là 45.000đồng/ 1m2. Hỏi các nhà Toán học phải chi bao nhiêu tiền để trồng hoa trên phần mảnh vườn đó? (Số tiền được làm tròn đến hàng nghìn).
A. 3.322.000 đồng
B. 3.476.000 đồng
C. 2.159.000
D. 2.715.000 đồng
Câu 29:
Cho số phức z thỏa mãn z=3i+4-3+2i-4-7i. Tính tích phần thực và phần ảo của z¯.z
A. 30
B. 3250
C. 70
Câu 30:
Cho số phức z thỏa mãn z=2+iz+21+2i1+i=7+8i (1).Chọn đáp án sai ?
A. z là số thuần ảo
B. z có phần ảo là số nguyên tố
C. z có phần thực là số nguyên tố
D. z có tổng phần thực và phần ảo là 5
Câu 31:
Cho số phức z biết z+2z-=1-i21+i22-i1. Tìm tổng phần thực và phần ảo của z
A. 42-215
B.-22-45
C. -22-1415
D. -22-145
Câu 32:
Tập hợp các điểm biểu diễn số phức z sao cho u=z+2+3iz-i. là một số thuần ảo. Là một đường tròn tâm.I(a;b)
Tính tổng a + b
C. - 2
Câu 33:
Trong mặt phẳng tọa độ Oxy, cho ba điểm M, N , P là điểm biểu diễn của 3 số phức: z1=8+3i,z2=1+4i,z3=5+xi.Với giá trị nào của x thì tam giác MNP vuông tại P?
A. 1 và 2
B. 0 và 7
C. - 1 và - 7
D. 3 và 5
Câu 34:
Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình sau có nghiệm thực trong đoạn 54;4m-1+log122x-22+4m-5log121x-2+4m-4=0
A.m>73
B. -3<m<73
C.-3≤m≤73
D.m<-3
Câu 35:
Cho số phức z thỏa mãn z+i+1=z--2i. Giá trị nhỏ nhất của z là:
A. z=12
B. z=12
C. z=2
D.z=2
Câu 36:
Cho số phức z thỏa mãn: z=m2+2m+5, với m là tham số thực thuộc ℝ. Biết rằng tập hợp các điểm biểu diễn các số phức w=3-4iz-2i là một đường tròn. Tính bán kính r nhỏ nhất của đường tròn đó.
A. r = 20
B. r = 4
C. r = 22
D. r = 5
Câu 37:
Một cái rổ (trong môn thể thao bóng rổ) dạng một hình trụ đứng, bán kính đường tròn đáy là r (cm), chiều cao 2r (cm), người đặt hai quả bong như hình. Như vậy diện tích toàn bộ của rổ và phần còn lại nhô ra của 2 quả cầu là bao nhiêu. Biết răng mỗi quả bóng bị nhô ra một nửa.
A. 4πr2 cm2
B. 6πr2 cm2
C. 8πr2 cm2
D. 10πr2 cm2
Câu 38:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I. Cạnh SA vuông góc với mặt phẳng (ABCD), SA= a3. Bán kính đường tròn ngoại tiếp hình chữ nhật ABCD bằng a33 , góc ∠ACB=30°. Tính theo a thể tích khối chóp S.ABCD
A. 2a33
B. a33
C. 2a36
D. 4a33
Câu 39:
Câu 40:
Cho hình lăng trụ tam giác đều ABC.A¢B¢C¢ có tất cà các cạnh đều bằng a. Tính diện tích của mặt cầu ngoại tiếp hình lăng trụ theo a.
A. 5πa23
B. 7πa23
C. 3πa2
D. 11πa23
Câu 41:
Một vật thể có dạng hình trụ, bán kính đường tròn đáy và độ dài của nó đều bằng 2r (cm). Người ta khoan một lỗ cũng có dạng hình trụ như hình, có bán kính đáy và độ sâu đều bằng r (cm). Thể tích phần vật thể còn lại (tính theo cm3) là:
A. 4πr3
B. 7πr3
C. 8πr3
D. 9πr3
Câu 42:
Tìm tọa độ điểm H là hình chiếu của M trên d, M1;2;-1, d:x=2-ty=1+2tz=3t
C. 13
D. 32
Câu 43:
A. H 2;1;0
B. H 0;5;6
C. H 1;3;3
D. H -1;7;9
Câu 44:
Viết phương trình mặt phẳng P chứa điểm A2;-3;1 và đường thẳng, d:x=4+2ty=2-3tz=3+t
A. 11x+2y+16z-32=0
B. 11x-2y+16z-44=0
C. 11x+2y-16z=0
D. 11x-2y-16z-12=0
Câu 45:
Trong không gian với hệ tọa độ Oxyz, một mặt phẳng đi qua điểm M1;3;9 và cắt các tia Ox, Oy, Oz lần lượt tại Aa;0;0,B0;b;0,C0;0;c với a, b, c là các số thực dương. Tìm giá trị của biểu thức P = a + b + c để thể tích tứ diện OABC đạt giá trị nhỏ nhất.
A. P = 44
B. P = 39
C. P = 27
D. P = 16
Câu 46:
Viết phương trình mặt phẳng (P) qua hai đường thẳng cắt nhau:
d1:x=3ty=1-2tz=3+t;d2:x=-1+2t'y=3-2t'z=-2+3t'
A. 4x-7y+2z-12=0
B. 4x-7y-2z+5=0
C. 4x+7y+2z-13=0
D. 2x+7y+4z-12=0
Câu 47:
Trong không gian Oxyz cho đường thẳng d:x-1=y-21=z-32 và hai mặt phẳng α: x+2y+2z+1=0, β: 2x-y-2z+7=0. Mặt cầu (S) có tâm nằm trên đường thẳng d và (S) tiếp xúc với hai mặt phẳng αvà β có bán kính là:
A. 2 ∨ 12
B. 4 ∨ 144
C. 2 ∨ 23
D. 2 ∨ 2
Câu 48:
Trong không gian Oxyz cho bốn điểmA1;0;2,
B1;1;0, C0;0;1 và D1;1;1.Phương trình
mặt cầu (S) ngoại tiếp tứ diện ABCD có tâm là
A. R=114
B. I-32;-12;12
C. R=102
D. I32;-12;12
Câu 49:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm
A0;1;1, B3;0;-1, C0;21;-19 và mặt cầu
S:x-12+y-12+z-12=1,
Ma;b;c là điểm thuộc mặt cầu (S) sao cho biểu thức
T=3MA2+2MB2+MC2 đạt giá trị nhỏ nhất. Tính tổng a + b + c
A. a+b+c=0
B. a+b+c=12
C. a+b+c=125
D. a+b+c=145
Câu 50:
Trong không gian Oxyz, đường thẳng D nằm trong mpα:y=2z=0 và cắt hai đường thẳng d1:x=1-ty=tz=4t và d2:x=2-ty=4+2tz=1 có phương trình tham số là:
A. x-14=y-2=z1
B. x=1+4ty=-2tz=t
C. x=-1+4ty=-2tz=t
D. x+14=y-2=z1
Câu 51:
d1:x=1-ty=tz=4t ,x-12=y+1-1=z,512,y=2x+1x+2, m=±3, z=x+yi, z-3z-1+2i, z1-i+z-1+i,,A=a2-b2
V=13Bh, y=fx, V=π53-2ln2, T=a+b, z1-z2, z2-z11+i, 32-434, cos2α=-45
S=∫abfxdx, S=π∫abf2xdx, S=1+log325, S=1+ln25, max0;1fx= 6, y=m cos x+1cos x+m
y=2sin2 x+3sin 2x-4cos2x, Cn+4n+1-Cn+3n=7n+3,y=11log13x2-4x+6+12, 1a,1b,1c
A-1;-1;1, y=x3-6x2+9x-2 , (P): 2x-2y+z+5=0, (P), 4z2-4z+3=0 , z1, z2, d1, d2,d3, S=9+99+999+...+99...99⏟n so 9
A1B1C1D1, d1:x+y-1=02x+z=0, 2x.9y=363x.4y=36
n⇀=2;-2;1, log2x+1<1, , ∫013x2+1dx, ∫01f''(x)1-xdx=1, y=-x3+3x,m<12
1768 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com