Thi Online Trắc nghiệm Toán 11 Bài 6: Trắc nghiệm các quy tắc tính đạo hàm có đáp án (Mới nhất)
Trắc nghiệm Toán 11 Dạng 1: tính đạo hàm bằng công thức tại một điểm hoặc bằng mtct có đáp án (Mới nhất)
-
387 lượt thi
-
31 câu hỏi
-
45 phút
Câu 1:
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) bởi \(f\left( x \right) = 2{x^2} + 1\). Giá trị \(f'\left( { - 1} \right)\) bằng:
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) bởi \(f\left( x \right) = 2{x^2} + 1\). Giá trị \(f'\left( { - 1} \right)\) bằng:
Hướng dẫn giải:
Chọn C.
Ta có : \(f'\left( x \right) = 4x\) \( \Rightarrow f'\left( { - 1} \right) = - 4\).
Câu 2:
Cho hàm số \[f\left( x \right) = - {x^4} + 4{x^3} - 3{x^2} + 2x + 1\] xác định trên \[\mathbb{R}\]. Giá trị \[f'\left( { - 1} \right)\]bằng:
Cho hàm số \[f\left( x \right) = - {x^4} + 4{x^3} - 3{x^2} + 2x + 1\] xác định trên \[\mathbb{R}\]. Giá trị \[f'\left( { - 1} \right)\]bằng:
Hướng dẫn giải:
Chọn D.
·Ta có: \(f'\left( x \right)\)\[ = - 4{x^3} + 12{x^2} - 6x + 2\]. Nên \[f'\left( { - 1} \right)\]\[ = 24\].
Câu 3:
Đạo hàm của hàm số \(f\left( x \right) = {\left( {{x^2} + 1} \right)^4}\) tại điểm \(x = - 1\) là:
Đạo hàm của hàm số \(f\left( x \right) = {\left( {{x^2} + 1} \right)^4}\) tại điểm \(x = - 1\) là:
Hướng dẫn giải:
Chọn C.
Ta có : \(y' = 4{\left( {{x^2} + 1} \right)^3}{\left( {{x^2} + 1} \right)^\prime } = 8x{\left( {{x^2} + 1} \right)^3}\)
\( \Rightarrow y'\left( { - 1} \right) = - 64\).
Câu 4:
Với \(f(x) = \frac{{{x^2} - 2x + 5}}{{x - 1}}\). Thì \[f'\left( { - 1} \right)\]bằng:
Với \(f(x) = \frac{{{x^2} - 2x + 5}}{{x - 1}}\). Thì \[f'\left( { - 1} \right)\]bằng:
Hướng dẫn giải:
Chọn D.
Ta có: \(f(x) = \frac{{{x^2} - 2x + 5}}{{x - 1}}\)\[ = x - 1 + \frac{4}{{x - 1}}\]\[ \Rightarrow f'\left( x \right) = 1 - \frac{4}{{{{\left( {x - 1} \right)}^2}}}\]\[ \Rightarrow f'\left( { - 1} \right) = 0\].
Câu 5:
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) bởi \(f\left( x \right) = \sqrt {{x^2}} \). Giá trị \(f'\left( 0 \right)\) bằng
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) bởi \(f\left( x \right) = \sqrt {{x^2}} \). Giá trị \(f'\left( 0 \right)\) bằng
Hướng dẫn giải:
Chọn D.
Ta có : \(f'\left( x \right) = \frac{x}{{\sqrt {{x^2}} }}\)
\( \Rightarrow f'\left( x \right)\) không xác định tại \(x = 0\)
\( \Rightarrow f'\left( 0 \right)\) không có đạo hàm tại \(x = 0\).
Bài thi liên quan
Có thể bạn quan tâm
Các bài thi hot trong chương
Đánh giá trung bình
0%
0%
0%
0%
0%