Đăng nhập
Đăng ký
19757 lượt thi 50 câu hỏi 60 phút
Câu 1:
Mệnh đề nào dưới đây đúng?
A. Hàm số y=log12x có tập xác định trên R
B. Hàm số y=log12x nghịch biến trên khoảng (0;+∞)
C. Hàm số y=log12x đồng biến trên khoảng (0;+∞)
D. Đồ thị hàm số y=log12x luôn đi qua điểm (1,1)
Câu 2:
Cho hàm số y=2x+1x+1có đồ thị (C). Mệnh đề nào dưới đây đúng?
A. (C) có tiệm cận đứng x= -12
B. (C) có tiệm cận đứng x= -1
C. (C) có tiệm cận đứng x=2
D. (C) có tiệm cận đứng x=1
Câu 3:
Tính thể tích V của khối lập phương ABCD.A' B' C' D' , biết AC'=a3
A. V= 33 a3
B. V= 27a3
C. V= a3
D. V= 3a3
Câu 4:
Cho tam giác ABC. Gọi M, N lần lượt là trung điểm các cạnh AB, AC. Mệnh đề nào sau đây là sai?
A. AN→=NC→
B. MN→=12BC→
C. MA→=MB→
D. BC→=2NM→
Câu 5:
Dãy số nào dưới đây có giới hạn bằng 0?
A. (1,01)n
B. 52n
C. 13n.
D. 53n
Câu 6:
Biết rằng phương trình z2+bz+c=0 (b,c∈R) có một nghiệm phức là z=1+2i. Khẳng định nào sau đây là đúng?
A. b+c= 0.
B. b+c= 2.
C. b+c= 3.
D. b+c=7.
Câu 7:
Tìm giá trị cực đại của tham số m để hàm số fx=x+1 khi x>2x2+m khi x≤2 liên tục tại điểm x=2?
A. m= -1.
B. m= 0.
C. m= 3.
D. m= -6.
Câu 8:
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ bên dưới.
Hàm số y=f(x) đồng biến trên khoảng nào sau đây?
A. (-2;2).
B. (0;2).
C. (3;+∞).
D. (-∞;1).
Câu 9:
Hàm số bậc hai nào sau đây có đồ thị đi qua 3 điểm A(0;-2), B(1;2) ,C(-1;-4) ?
A. y=x2-4x+3.
B. y=-2x2+6x-2.
C. y=-3x2+x-2.
D. y=x2+3x-2.
Câu 10:
Trong không gian Oxyz, điểm M' đối xứng với điểm M(1;2;4) qua mặt phẳng (α):2x+y+2z-3=0 có tọa độ là
A. (-3;0;0)
B. (-1;1;2)
C. (-1;-2;-4)
D. (2;1;2)
Câu 11:
Cho biết có hai số phức z thỏa mãn z2=119-120i, ký hiệu z1 và z2. Tính |z1-z2|2.
A. 169.
B. 114244.
C. 338.
D. 676.
Câu 12:
Xét bất phương trình 52x-3.5x+2+32<0. Nếu đặt t=5x thì phương trình trở thành bất phương trình nào sau đây?
A. t2-3t+32<0.
B. t2-16t+32<0.
C.t2-6t+32<0.
D. t2-75t+32<0.
Câu 13:
Trong không gian Oxyz, mặt cầu tâm I(1;2;3) cắt mặt phẳng (α):2x-y-2z+18=0 theo một đường tròn có chu vi bằng 10π có phương trình là:
A. (x-1)2+(y-2)2+(z-3)2=16
B. (x-1)2+(y-2)2+(z-3)2=25
C.(x-1)2+(y-2)2+(z-3)2=41
D. (x-1)2+(y-2)2+(z-3)2=9
Câu 14:
Cho tứ diện ABCD có các cạnh OA, OB, OC đôi một vuông góc và OA = OB = OC = 1. Khoảng cách giữa hai đường thẳng OA và BC bằng
A. 32
B. 22
C. 13
D. 12
Câu 15:
Cho tam giác ABC vuông tại A và góc ABC^=300. Xác định góc giữa hai vectơ CA→;CB→.
A. 600
B. 1200.
C. -300.
D. 300.
Câu 16:
Cấp số cộng (un) thỏa mãn u4=10u4+u6=26 có công sai là
A. d = -3
B. d = 3
C. d = 5
D. d = 6
Câu 17:
Cho hình chữ nhật ABCD có diện tích bằng 24 và AB=23 BC. Thể tích khối tròn xoay có được khi quay hình chữ nhật ABCD quanh cạnh BC bằng
A. 96π.
B. 64π.
C. 144π.
D. 112π
Câu 18:
Trên mặt phẳng tọa độ, tập hợp các điểm biểu diễn các số phức z thỏa mãn |z-(3-4i)|=2 là
A. Đường tròn tâm I(3;4), bán kính R = 2.
B. Đường tròn tâm I(-3;-4), bán kính R = 2.
C. Đường tròn tâm I(3;-4), bán kính R = 2.
D. Đường tròn tâm I(-3;4), bán kính R = 2
Câu 19:
Hàm số y=f(x) xác định và có đạo hàm trên R\{-1;1} có bảng biến thiên như hình bên. Đồ thị hàm số y=f(x) có tất cả bao nhiêu đường tiệm cận (đứng và ngang)?
A. 2
B. 3
C. 4
D. 5.
Câu 20:
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)+x+2y-z-1=0 và (β):2x+4y-mz-2=0. Tìm m để hai mặt phẳng (α) và (β) song song với nhau.
A. m= 1.
B. Không tồn tại m.
C. m = -2.
D. m = 2.
Câu 21:
Biết rằng phương trình log139x2+log3x281-7=0 có hai nghiệm phân biệt x1,x2. Tính P=x1x2.
A.P=193
B. P=36.
C. P=93.
D. P=38
Câu 22:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:x-21=y-22=z+2-1 và mặt phẳng (α):2x+2y-z-4=0. Tam giác ABC có A(-1;2;1), các đỉnh B, C nằm trên (α) và trọng tâm G nằm trên đường thẳng d. Tọa độ trung điểm M của BC là
A. M(2;1;2)
B. M(0;1;-2)
C. M(1;-1;-4)
D. M(2;-1;-2)
Câu 23:
Cho dãy số (un) thỏa mãn logu12+u22+10-log2u1+6u2=0 và un+2+un=2un+1+1 với mọi n∈ N*. Giá trị nhỏ nhất của n để un>5050 bằng
A. 101.
B. 102.
C. 100.
D. 99.
Câu 24:
Cho hình chóp tứ giác đều S.ABCD, có đáy ABCD là hình vuông, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Góc giữa hai mặt phẳng (MBD) và (ABCD) bằng
A. 900
B. 300
C. 450
D. 600
Câu 25:
Một bảng khóa điện tử của phòng học gồm 10 nút, mỗi nút được ghi một số ừ 0 đến 9 và không có hai nút nào được ghi cùng một số. Để mở cửa cần nhấn liên tiếp 3 nút khác nhau sao cho 3 số trên 3 nút đó theo thứ tự đã nhẫn tạo thành một dãy số tăng và có tổng bằng 10. Một người không biết quy tắc mở cửa trên, đã nhấn ngẫu nhiên liên tiếp 3 nút khác nhau trên bảng điều khiển, tính xác suất để người đó mở được cửa phòng học.
A. 112
B. 172
C. 190
D. 115
Câu 26:
Trong không gian Oxyz, cho đường thẳng Δ1:x-82=y+24=z-3m-1 và Δ2: y=3-t z=2+2tx=4+4t . Giá trị của m để Δ1và Δ2 cắt nhau là
A. m= -258
B. m= 258
D. m= -3
Câu 27:
Cho hàm số f(x)=(2x+m)/(√x+1) với m là tham số thực, m>1. Gọi S là tập tất cả các giá trị nguyên dương của m để hàm số có giá trị lớn nhất trên đoạn [0;4] nhỏ hơn 3. Số phần tử của tập S là
A. 1
C. 0
D. 2
Câu 28:
Cho hàm số y=f(x) là hàm lẻ, liên tục trên [-4;4], biết ∫-20f(-x)dx=2 và ∫12f(-2x)dx=4. Tính I=2∫04f(x)dx
A. I = -10.
B. I = -6.
C. I = 6.
D. I = 10
Câu 29:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = 3, BC = 4, đường thẳng SA vuông góc với mặt phẳng (ABC), SA = 4. Gọi AM, AN lần lượt là chiều cao của tam giác SAB và SAC. Thể tích khối tứ diện AMNC là
A. 128/41
B. 768/41
C. 384/41
D. 256/41
Câu 30:
Cho các số phức z1,z2 thỏa mãn |z1|=1,|z2|=2và z1.z2¯ là thuần ảo, tính |z1-z2|.
A. 2.
B. 3.
C. 2
D.5
Câu 31:
Cho (H) là hình phẳng giới hạn bởi parabol y=14x2+1 với 0≤x≤22, nửa đường tròn y=8-x2 và trục hoành, trục tung (phần tô đậm trong hình vẽ). Diện tích của (H) bằng
A. 3π+146
B. 3π+23
C.3π+43
D. c
Câu 32:
Cho hàm số y= f(x) liên tục trên R. Biết ∫0x2f(t)dt=ex2+x4-1 với ∀x∈R. Giá trị của f(4) là
A. f(4)=e4+4.
B. f(4)=e4
C. f(4)=e4+8.
D. f(4)=1
Câu 33:
Cho ba số a,b,c,d theo thứ tự tạo thành cấp số nhân với công bội khác 1. Biết tổng ba số hạng đầu bằng 1489, đồng thời theo thứ tự đó chúng lần lượt là số hạng thứ nhất, thứ tư và thứ tám của một cấp số cộng. Tính giá trị biểu thức T=a-b+c-d?
A. T=10127 x
B. T=10027.
C. T=-10027
D. T= -10127
Câu 34:
Cho hình nón (N) có bán kính r = 20(cm), chiều cao h = 60(cm) và mọt hình trụ (T) nội tiếp hình nón (N) (hình trụ (T) có một đáy thuộc đáy hình nón và một đáy nằm trên mặt xung quanh của hình nón). Tính thể tích V của hình trụ (T) có diện tích xung quanh lớn nhất?
A. V=3000π(cm3).
B. V=320009π(cm3).
C. V=3600π(cm3).
D. V=4000π(cm3).
Câu 35:
Cho hàm số f(x) có đạo hàm không âm trên [0;1] thỏa mãn ([f(x)]2[f'(x)]2)e2x=1+[f(x)]2 và f(x)> 0 với ∀x∈[0;1], biết f(0)=1. hãy chọn khẳng định đúng trong các khẳng định sau
A. 52<f(1)< 3
B. 3<f(1)< 72
C. 2<f(1)< 52
D. 32<f(1)< 2
Câu 36:
Trong không gian tọa độ Oxyz cho các điểm A(1;5;0), B(3;3;6) và đường thẳng Δ:x+12=y-1-1=z2. Gọi M(a;b;c) ∈ Δ sao cho chu vi tam giác MAB đạt giá trị nhỏ nhất. Tính tổng T=a+b+c?
A. T = 2.
B. T = 3
C. T = 4
D. T = 5
Câu 37:
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(x)>0,∀x∈R. Biết f(0)=1 và (2-x)f(x)-f' (x)=0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)=m có hai nghiệm phân biệt.
A. m<e2.
B. 0<m< e2.
C. 0<m≤ e2.
D. m > e2
Câu 38:
Trong không gian với hệ tọa độ Oxyz, gọi (P) là mặt phẳng đi qua điểm M(4;1;1), cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho biểu thức OA + OB + OC đạt giá trị nhỏ nhất. Mặt phẳng (P) đi qua điểm nào dưới đây?
A. (2,0,2).
B. (2,2,0).
C. (2,1,1)
D. (0,2,2)
Câu 39:
Cho hàm số y=f(x)>0 xác định và có đạo hàm trên đoạn [0;1] và thỏa mãn các điều kiện sau: g(x)=1+2018∫0xf(t)dt;g(x)=f2(x). Tính∫01(g(x)dx?
A. 1011/2.
B. 1009/2.
C. 2019/2.
D. 505
Câu 40:
Cho x,y là các số thực dương thay đổi. Xét hình chóp S.ABC có SA= x,BC= y, các cạnh còn lại đều bằng 1. Khi thể tích khối chóp S.ABC đạt giá trị lớn nhất thì tích x+y bằng:
A. 43
B. 433
C.23
D. 13
Câu 41:
Chị Lan có 400 triệu đồng mang đi gửi tiết kiệm ở hai loại kì hạn khác nhau đều theo thể thức lãi kép. Chị gửi 200 triệu động theo kì hạn quý với lãi suất 2,1% một quý, 200 triệu đồng còn lại chị gửi theo kì hạn tháng với lãi suất 0,73% một tháng. Sau khi gửi được đúng 1 năm, chị rút ra một nửa số tiền ở loại kì hạn theo quý và gửi vào loại kì hạn theo tháng. Hỏi sau đúng 2 năm kể từ khi gửi tiền lần đầu, chị Lan thu được tất cả bao nhiêu tiền lãi (làm tròn đến hàng nghìn)?
A. 79760000.
B. 74813000
C. 65393000
D. 70656000.
Câu 42:
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.
Câu 43:
Trong không gian với hệ tọa độ Oxyz, cho điểm M thuộc mặt cầu (S):(x-3)2+(y-3)2+(z-2)2=9 và ba điểm A(1;0;0);B(2;1;3);C(0;2;-3). Biết rằng quỹ tích các điểm M thỏa mãn MA2+2.MB→.MC→=8 là đường tròn cố định, tính bán kính r đường tròn này.
A. r= 3.
B. r= 3.
C. r= 6
D. r= 6
Câu 44:
Cho dãy số (un) thỏa mãn logu5-2logu2 =2(1+logu5-2logu2+1) và un=3un-1,∀ n ≥1. Giá trị lớn nhất của n để un<7100 bằng
A. 192
B. 191.
C. 179
D. 177.
Câu 45:
Cho z và w là hai số phức liên hợp thỏa mãn zw2 là số thực và |z-w|=23. Mệnh đề nào sau đây là đúng?
A. 3<|z|<4.
B. |z|<1.
C. 1<|z|<3.
D. |z|>4.
Câu 46:
Cho hàm số y=f(x). Hàm số y=f' (x) có đồ thị như hình bên.
Tìm m để hàm số y=f(x2+m)có 3 điểm cực trị?
A. m∈[0;3] m∈(3;+∞)
m∈(-∞;0)
B. m∈[0;3 )
C. m∈(3;+∞)
D. m∈(-∞;0)
Câu 47:
Trong không gian Oxyz cho mặt cầu (S):(x-1)2+(y+2)2+(z-3)2=27. Gọi (α) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là (C) có thể tích lớn nhất. Biết mặt phẳng (α) có phương trình dạng ax+by-z+c= 0, khi đó a-b+c bằng:
A. -4.
B. 8
Câu 48:
Một hội nghị gồm 6 đại biểu nước A, 7 đại biểu nước B và 7 đại biểu nước C, trong đó mỗi nước có hai đại biểu là nữ. Chọn ngẫu nhiên ra 4 đại biểu, xác suất để chọn được 4 đại biểu để mỗi nước đều có ít nhất một đại biểu và có cả đại biểu nam và đại biểu nữ bằng
A. 46/95.
B. 3844/4845.
C. 49/95.
D. 1937/4845
Câu 49:
Trong không gian Oxyz, cho mặt cầu (S):(x+1)2+(y+2)2+z2=4và các điểm A(-2;0;-22), B(-4;-4;0). Biết rằng tập hợp các điểm M thuộc (S) và thỏa mãn MA2+MO→.MB→=16 là đường tròn. Tính bán kính đường tròn đó.
A. 324
B. 32
C. 374
D. 52
Câu 50:
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Đồ thị hàm f(x) như hình vẽ.
Số đường tiệm cận đứng của đồ thị hàm số y=x2-1f2(x)-4f(x) là
A. 4
B. 1
D. 3
3951 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com