Dạng 8: Các bài toán khác có đáp án
67 người thi tuần này 4.6 26.4 K lượt thi 3 câu hỏi 30 phút
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
• Phân tích đề bài
Từ công thức tính nồng độ dung dịch \[\frac{{{m_{ct}}}}{{{M_{dd}}}}.100\% .\] Muốn tính được nồng độ của Axít trong dung dịch đâu tiên thì ta cân phải tính được khối lượng chât tan (Axít) và khối lượng của dung dịch (nước\[ + \]Axít).
Do vậy, ta cần gọi hai ẩn là khối lượng của Axít và khối lượng của nước trong dung dịch đầu tiên.
Lập bảng:
|
Khối lượng nước (g) |
Khối lượng Axít (g) |
Khối lượng dung dịch (g) |
Nồng độ dung dịch (%) |
Lúc đầu |
x |
y |
\[x + y\] |
\(\frac{y}{{x + y}}.100\% \) |
Lần 1 |
x |
\[y + 200\] |
\[x + y + 200\] |
\(\frac{{y + 200}}{{x + y + 200}}.100\% \) |
Lần 2 |
\[x + 300\] |
\[y + 200\] |
\[x + y + 200 + 300\] |
\(\frac{{y + 200}}{{x + y + 500}}.100\% \) |
• Giải chi tiết
Gọi khối lượng nước trong dung dịch đầu tiên là x gam, khối lượng Axít trong dung dịch đầu tiên là y gam. Điều kiện: \[x > 0;y > 0.\]
Sau khi thêm 200 gam Axít vào dung dịch Axít ta có lượng Axít là: \[y + 200\] gam và nồng độ là \[50\% = \frac{1}{2}\]
Do đó ta có:
\[\frac{{y + 200}}{{y + 200 + x}} = \frac{1}{2} \Leftrightarrow 2y + 400 = y + 200 + x \Leftrightarrow x - y = 200.\] (1)
Sau khi thêm 300 gam nước vào dung dịch thì khối lượng nước là: \[x + 300\] gam và nồng độ là \[40\% = \frac{2}{5}\] nên ta có:
\[\frac{{y + 200}}{{y + 200 + x + 300}} = \frac{2}{5} \Leftrightarrow 5y + 1000 = 2y + 2x + 1000 \Leftrightarrow 2x - 3y = 0.\;\] (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x - y = 200\\2x - 3y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 600\\y = 400\end{array} \right.\)
Vậy trong dung dịch đầu tiên có 600 gam nước và 400 gam Axít.
Do đó nồng độ Axít trong dung dịch đầu tiên là: \[\frac{{400}}{{600 + 400}} = 40\% .\]
Lời giải
• Giải chi tiết
Gọi khối lượng nước sôi là x (kg) thì khối lượng nước lạnh là: \[100 - x\] (kg).
Điều kiện: \[0 < x < 100.\]
Nhiệt lượng nước sôi toả ra khi hạ xuống đến \[40^\circ C\] là: \[x\left( {100 - 40} \right) = 60x\] (Kcal).
Nhiệt lượng nước lạnh tăng từ \[20^\circ C\] đến \[40^\circ C\] là: \[\left( {100 - x} \right).20\] (Kcal).
Vì nhiệt lượng thu vào bằng nhiệt lượng toả ra nên ta có: \[60x = \left( {100 - x} \right).20.\]
Giải phương trình ta được \[x = 25\] (thỏa mãn).
Vậy khối lượng nước sôi là 25kg; nước lạnh là 75kg tương đương với 25 lít và 75 lít.
Lời giải
• Giải chi tiết
Gọi khối lượng riêng của chất lỏng thứ nhất là x \[\left( {g/c{m^3}} \right).\] Điều kiện: \[x > 0,2.\]
Khối lượng riêng của chất lỏng thứ hai là \[x - 0,2{\rm{ }}\left( {g/c{m^3}} \right).\]
Thể tích của chất lỏng thứ nhất là \[\frac{8}{x}{\rm{ }}\left( {c{m^3}} \right).\]
Thể tích của chất lỏng thứ hai là \[\frac{6}{{x - 0,2}}\left( {c{m^3}} \right).\]
Thể tích của hỗn hợp là \[\frac{8}{x} + \frac{6}{{x - 0,2}}\left( {c{m^3}} \right)\]
Theo bài ra ta có phương trình:
\[\frac{8}{x} + \frac{6}{{x - 0,2}} = \frac{{14}}{{0,7}} \Leftrightarrow \] \[14{x^2} - 12,6x + 1,12 = 0 \Leftrightarrow \]
Vậy khối lượng riêng của chất lỏng thứ nhất là \[0,8\left( {g/c{m^3}} \right).\]
Khối lượng riêng của chất lỏng thứ hai là \[0,6\left( {g/c{m^3}} \right).\]
5281 Đánh giá
50%
40%
0%
0%
0%