Trắc nghiệm Hệ phương trình bậc nhất hai ẩn có đáp án (Thông hiểu)

  • 898 lượt thi

  • 10 câu hỏi

  • 15 phút

Câu 1:

Xác định giá trị của tham số m để hệ phương trình x+y=1mx+y=2m vô nghiệm

Xem đáp án

Đáp án A

Để hệ phương trình x+y=1mx+y=2m vô nghiệm thì m1=112m1m=1m12m=1


Câu 2:

Xác định giá trị của tham số m để hệ phương trình 2xy=4(m1)x+2y=m vô nghiệm

Xem đáp án

Đáp án D

Ta có 2xy=4(m1)x+2y=m

y=2x42y=(1m)x+my=2x4y=1m2x+m2

Để hệ phương trình 2xy=4(m1)x+2y=mvô nghiệm thì đường thẳng d: y = 2x – 4 song song với đường thẳng d’: y=1m2x+m2 suy ra

1m2=2m241m=4m8m=3m8m=3


Câu 3:

Cho hệ (I): x=y1y=x1 và hệ (II): 2x3y=53y+5=2x. Chọn kết luận đúng

Xem đáp án

Đáp án D

Xét hệ (I): x=y1y=x1y=x+1y=x+1

Nhận thấy rằng hai đường thẳng (d1): y = x + 1 và (d2): y = x + 1 trùng nhau nên hệ (I) có vô số nghiệm.

Xét hệ (II) 2x3y=53y+5=2x

3y=2x53y=2x5y=23x53y=23x53

Nhận thấy rằng hai đường thẳng (d3):y=23x53  và (d4):y=23x53  trùng nhau nên hệ (II) có vô số nghiệm


Câu 4:

Xác định giá trị của tham số m để hệ phương trình mx2y=12xmy=2m2 có nghiệm duy nhất

Xem đáp án

Đáp án D

Để hệ phương trình mx2y=12xmy=2m2 có nghiệm duy nhất thì m22mm24m±2


Câu 5:

Xác định giá trị của tham số m để hệ phương trình x(m2)y=2(m1)x2y=m5 có nghiệm duy nhất

Xem đáp án

Đáp án C

Xét hệ x(m2)y=2(m1)x2y=m5

(m2)y=x22y=(m1)xm+5(m2)y=x2y=m12xm2+52

TH1: Với m – 2 = 0 m = 2 ta có hệ 0.y=x2y=12x+32x=2y=12x+32

Nhận thấy hệ này có nghiệm duy nhất vì hai đường thẳng x = 2 và y=12x+32 cắt nhau

TH2: Với m – 2  0  m  2 ta có hệ:

(m2)y=x2y=m12xm2+52y=1m2x2m2y=m12xm2+52

Để hệ phương trình đã cho có nghiệm duy nhất thì hai đường thẳng:

d: y=1m2x2m2 và d’: y=m12xm2+52 cắt nhau

1m2m12(m1)(m2)2

m23m+22m23m0

m(m3)0m0m3

Suy ra m {0; 2; 3}

Kết hợp cả TH1 và TH2 ta có m{0; 3}

Vậy hệ phương trình đã cho có nghiệm duy nhất khi m0;3


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Có thể bạn quan tâm

Các bài thi hot trong chương

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận