Trắc nghiệm Toán 9 Bài 4 (có đáp án): Đường thẳng song song và đường thẳng cắt nhau

  • 1182 lượt thi

  • 21 câu hỏi

  • 10 phút

Câu 1:

Hai đường thẳng d: y = ax + b (a 0) và d': y = a'x + b'(a'  0) cắt nhau khi:

Xem đáp án

Đáp án A

Cho hai đường thẳng d: y = ax + b (a  0) và d': y = a'x + b'(a'  0)

d cắt d' ⇔ a  a'


Câu 2:

Hai đường thẳng d: y = ax + b(a  0) và d': y = a'x + b'(a'  0) có a = a' và b  b' . Khi đó:

Xem đáp án

Đáp án A

Cho hai đường thẳng d: y = ax + b(a  0) và d': y = a'x + b'(a'  0)

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án


Câu 3:

Cho hai đường thẳng d: y = x + 3 và d': y = -2x . Khi đó:

Xem đáp án

Đáp án C

Ta thấy d: y = x + 3 có a = 1 và d': y = -2x có a' = -2 ⇒ a  a' (1  -2) nên d cắt d'


Câu 4:

Cho hai đồ thị của hàm số bậc nhất là hai đường thẳng d: y = (m + 2)x - m và d': y = -2x - 2m + 1. Với giá trị nào của m thì d cắt d' ?

Xem đáp án

Đáp án C

• Ta thấy d: y = (m + 2)x - m có a = m + 2 và d': y = -2x - 2m + 1 có a' = -2

• Để y = (m + 2)x - m là hàm số bậc nhất thì m + 2  0 ⇔ m  -2

• Để d cắt d' ⇔ a  a' ⇔ m + 2  -2 ⇔ m  -4

Vậy m  -2; m  -4


Câu 5:

Cho hai đồ thị của hàm số bậc nhất là hai đường thẳng d: y = (m + 2)x - m và d': y = -2x - 2m + 1. Với giá trị nào của m thì d // d' ?

Xem đáp án

Đáp án B

• Ta thấy d: y = (m + 2)x - m có a = m + 2; b = -m và d': y = -2x - 2m + 1 có

• Để y = (m + 2)x - m là hàm số bậc nhất thì m + 2  0 ⇔ m  -2

• Để d // d' ⇔ a = a'; b ≠ b'

a = a' ⇔ m + 2 = -2 ⇔ m = -4

 b' ⇔ -m  -2m + 1 ⇔ m  1

Vì m = -4 thỏa mãn m  -2; m  1 nên giá trị m cần tìm là m = -4

Vậy m = -4


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Có thể bạn quan tâm

Các bài thi hot trong chương

4

Đánh giá trung bình

0%

100%

0%

0%

0%

Nhận xét

D

1 năm trước

Dương Ánh

Bình luận


Bình luận