Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
67420 lượt thi 50 câu hỏi 90 phút
Câu 1:
Cho A là tập hợp gồm 20 điểm phân biệt. Số đoạn thẳng có hai điểm đầu mút phân biệt thuộc tập A là:
A. 170
B. 160
C. 190
D. 360
Câu 2:
Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.
A. q=3
B. q=-3
C. q=2
D. q=-2
Câu 3:
Cho hàm số y=f(x) có bảng biến thiên bên dưới.
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. 0;1
B. −∞;0
C. 1;+∞
D. −1;0
Câu 4:
Cho hàm số có bảng biến thiên như sau
Hàm số có cực đại là
A. y=5
B. x=2
C. x=0
D. y=1
Câu 5:
Cho hàm số y=f(x) xác định, liên tục trên đoạn [-2;3] và có đồ thị là đường cong trong hình vẽ bên. Tìm số điểm cực đại của hàm số y=f(x) trên đoạn [-2;3].
A. 1
B. 0
C. 2
D. 3
Câu 6:
Đồ thị hàm số y=x+12−x có tiệm cận ngang là đường thẳng:
A. y=2
B. y=-1
C. y=12
D. x=2
Câu 7:
Đường cong ở hình bên là đồ thị của hàm số nào?
A. f(x)=x4−2x2
B. f(x)=x4+2x2
C. f(x)=−x4+2x2−1
D. f(x)=−x4+2x2
Câu 8:
Số giao điểm của đồ thị hàm số y = x3-3x+1 và trục hoành là
A. 3
D. 1
Câu 9:
Với a là số thực dương, log32a2 bằng:
A. 2log32a
B. 4log32a
C. 4log3a
D. 49log3a
Câu 10:
Tính đạo hàm của hàm số y=15e4x.
A. y'=120e4x
B. y'=−45e4x
C. y'=45e4x
D. y'=−120e4x
Câu 11:
Cho a là số thực dương. Giá trị rút gọn của biểu thức P=a43a bằng
A. a73
B. a56
C. a116
D. a103
Câu 12:
Số nghiệm của phương trình 22x2−7x+5=1 là
A. 0
B. 3
Câu 13:
Tìm tập nghiệm S của phương trình log2x2−2+2=0.
A. S=−23;23
B. S=−32;32
C. S=23
D. S=32
Câu 14:
Một nguyên hàm của hàm số f(x) = 2x+1 là
A. F(x)=x2+x
B. F(x)=x2+1
C. F(x)=2x2+x
D. F(x)=x2+C
Câu 15:
Họ nguyên hàm của hàm số f(x) = x-sin2x là
A. ∫f(x)dx=x22+cos2x+C
B. ∫f(x)dx=x22+12cos2x+C
C. ∫f(x)dx=x2+12cos2x+C
D. ∫f(x)dx=x22−12cos2x+C
Câu 16:
Cho ∫acfxdx=50, ∫bcfxdx=20. Tính ∫bafxdx.
A. -30
C. 70
D. 30
Câu 17:
Tính tích phân ∫0πsin3xdx
A. −13
B. 13
C. −23
D. 23
Câu 18:
Số phức z = 5-6i có phần ảo là
A. 6
B. -6i
C. 5
D. -6
Câu 19:
Cho hai số phức z1=1+2i, z2=2−3i. Xác định phần thực, phần ảo của số phức z=z1+z2.
A. Phần thực bằng 3; phần ảo bằng -5.
B. Phần thực bằng 5; phần ảo bằng 5.
C. Phần thực bằng 3; phần ảo bằng 1.
D. Phần thực bằng 3; phần ảo bằng -1.
Câu 20:
Điểm M là biểu diễn của số phức z trong hình vẽ bên dưới. Chọn khẳng định đúng
A. z=2i
B. z=0
C. z=2
D. z=2+2i
Câu 21:
Khối chóp có đáy là hình vuông cạnh a và chiều cao bằng 4a. Thể tích khối chóp đã cho bằng
A. 43a3
B. 163a3
C. 4a3
D. 16a3
Câu 22:
Cho hình lăng trụ đều ABC.A’B’C’ có cạnh đáy và cạnh bên cùng bằng a. Tính thể tích của khối lăng trụ đó
A. a3612
B. a364
C. a3312
D. a334
Câu 23:
Một khối nón có chiều cao bằng 3a, bán kính 2a thì có thể tích bằng
A. 2πa3
B. 12πa3
C. 6πa3
D. 4πa3
Câu 24:
Cho khối trụ tròn xoay có bán kính đáy bằng 3a, chiều cao bằng 4a, với 0<a∈ℝ. Thể tích của khối trụ tròn xoay đã cho bằng
A. 48πa3
B. 18πa3
C. 36πa3
D. 12πa3
Câu 25:
Trong không gian Oxyz, cho hai điểm A1; 1; −1 , B2; 3; 2. Vectơ AB→ có tọa độ là
A. 1; 2; 3
B. −1; −2; 3
C. 3; 5; 1
D. 3; 4; 1
Câu 26:
Trong không gian Oxyz, mặt cầu x−12+y−22+z+32=4 có tâm và bán kính lần lượt là
A. I1;2;−3, R=2
B. I−1;−2;3, R= 2
C. I1;2;−3, R=4
D. I−1;−2;3, R=4
Câu 27:
Phương trình mặt phẳng (P) đi qua điểm M−1;2;0 và có vectơ pháp tuyến n→=4;0;−5 là
A. 4x−5y−4=0
B. 4x−5z−4=0
C. 4x−5y+4=0
D. 4x−5z+4=0
Câu 28:
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d:x=1y=2+3tz=5−tt∈ℝ. Vectơ chỉ phương của d là
A. u2→=1;3;−1
B. u1→=0;3;−1
C. u4→=1;2;5
D. u3→=1;−3;−1
Câu 29:
Gieo đồng tiền hai lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần
A. 14
B. 12
C. 34
D. 13
Câu 30:
Hàm số f(x) = x4-2 nghịch biến trên khoảng nào?
A. −∞;12
B. 0;+∞
C. −∞;0
D. 12;+∞
Câu 31:
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số fx=x3−3x2−9x+35 trên đoạn [-4;4] . Tính M+2m .
A. M+2m=−1
B. M+2m=39
C. M+2m=−41
D. M+2m=−40
Câu 32:
Tập nghiệm của bất phương trình 12x>4 là
A. −2;+∞
B. −∞;−2
C. −∞;2
D. 2;+∞
Câu 33:
Cho ∫124fx−2xdx=1. Khi đó ∫12fxdx bằng :
B. -3
C. 3
D. -1
Câu 34:
Cho số phức z thỏa mãn 1+2iz=1+2i−−2+i. Mô đun của z bằng
A. 2
B. 1
D. 10
Câu 35:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, cạnh bên SA vuông góc mặt đáy và SA=a. Gọi φ là góc tạo bởi SB và mặt phẳng (ABCD). Xác định cotφ?
A. cotφ=2
B. cotφ=12
C. cotφ=22
D. cotφ=24
Câu 36:
Cho hình chóp S.ABC có ABC là tam giác vuông tại B, SA⊥ABC. Khoảng cách từ điểm A đến mặt phẳng (SBC) là:
A. Độ dài đoạn AC.
B. Độ dài đoạn AB.
C. Độ dài đoạn AH trong đó H là hình chiếu vuông góc của A trên SB.
D. Độ dài đoạn AM trong đó M là trung điểm của SC.
Câu 37:
Trong không gian Oxyz, cho hai điểm A1;2;3 và B3;2;1. Phương trình mặt cầu đường kính AB là
A. x−22+y−22+z−22=2
B. x−22+y−22+z−22=4
C. x2+y2+z2=2
D. x−12+y2+z−12=4
Câu 38:
Trong không gian với hệ trục Oxyz, cho tam giác ABC có A−1;3;2, B2;0;5 và C0;−2;1. Phương trình trung tuyến AM của tam giác ABC là.
A. x+1−2=y−3−2=z−2−4
B. x+12=y−3−4=z−21
C. x−2−1=y+43=z−12
D. x−12=y+3−4=z+21
Câu 39:
Gọi S là tập tất cả các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số y=14x4−192x2+30x+m−20 trên đoạn [0;2] không vượt quá 20. Tổng các phần tử của S bằng
A. 210
B. -195
C. 105
D. 300
Câu 40:
Có bao nhiêu số tự nhiên x không vượt quá 2018 thỏa mãn log2x4log22x≥0?
A. 2017
B. 2016
C. 2014
D. 2015
Câu 41:
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Đồ thị hàm số y=f(x) như hình vẽ bên. Khi đó giá trị của biểu thức ∫04f'x−2dx+∫02f'x−2dx bằng bao nhiêu ?
B. -2
C. 10
D. 6
Câu 42:
Tính tổng S của các phần thực của tất cả các số phức z thỏa mãn điều kiện z¯=3z2.
A. S=3.
B. S=36.
C. S=233.
D. S=33.
Câu 43:
Cho hình chóp có đáy là hình vuông cạnh a, vuông góc với mặt phẳng (ABCD), góc giữa với mặt phẳng bằng 60o. Thể tích khối chóp là
A. a33
B. a333
C. 3a3
D. 33a3
Câu 44:
Bác Năm làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Vậy số tiền bác Năm phải trả là:
A. 33750000 đồng
B. 12750000 đồng
C. 6750000 đồng
D. 3750000 đồng
Câu 45:
Trong không gian Oxyz, đường thẳng đi qua điểm M1;2;2, song song với mặt phẳng P:x−y+z+3=0 đồng thời cắt đường thẳng d:x−11=y−21=z−31 có phương trình là
A. x=1−ty=2−tz=2
B. x=1−ty=2−tz=3−t
C. x=1+ty=2−tz=3
D. x=1−ty=2+tz=3
Câu 46:
Cho hàm số y=f(x) và đồ thị hình bên là đồ thị của đạo hàm f’(x). Hỏi đồ thị của hàm số gx=2fx−x−12 có tối đa bao nhiêu điểm cực trị ?
A. 9
B. 11
C. 8
D. 7
Câu 47:
Cho phương trình log25x−1.log42.5x−2=m. Hỏi có bao nhiêu giá trị nguyên m để phương trình có nghiệm thuộc đoạn 1; log59?
A. 4
B. 5
Câu 48:
Cho hàm số f(x) có đạo hàm f’(x) liên tục trên R và đồ thị của f’(x) trên đoạn [-2;6] như hình bên dưới. Khẳng định nào dưới đây đúng?
A. f−2<f−1<f2<f6
B. f2<f−2<f−1<f6
C. f−2<f2<f−1<f6
D. f6<f2<f−2<f−1
Câu 49:
Cho hai số phức z1,z2 thỏa mãn z1+1−i=2 và z2=iz1. Tìm giá trị nhỏ nhất m của biểu thức z1−z2?
A. m=2−1
B. m=22
C. m=2
D. m=22−2
Câu 50:
Trong không gian Oxyz, cho mặt phẳng (P): x+2y+2z+4=0 và mặt cầu (S):x2+y2+z2−2x−2y−2z−1=0. Giá trị của điểm M trên (S) sao cho d(M,(P)) đạt GTNN là
A. 1;1;3
B. 53;73;73
C. 13;−13;−13
D. 1;−2;1
13 Đánh giá
77%
0%
15%
8%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com