Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
30577 lượt thi 50 câu hỏi 90 phút
Câu 1:
Tìm m để mọi tiếp tuyến của đồ thị hàm số y=x3–mx2+(2m-3)x-1 đều có hệ số góc dương?
A. m > 1
B. m ≠ 1
C. m∈∅
D. m ≠ 0
Câu 2:
Hàm số y=-x3+1 có bao nhiêu cực trị?
A. 1
B. 0
C. 3
D. 2
Câu 3:
Cho đồ thị hàm số y=f(x) có limx→+∞fx=0 và limx→-∞fx=+∞. Mệnh đề nào sau đây là mệnh đề đúng?
A. Đồ thị hàm số không có tiệm cận ngang
B. Đồ thị hàm số nằm phía trên trục hoành
C. Đồ thị hàm số có một tiệm cận đứng là đường thẳng y=0
D. Đồ thị hàm số có một tiệm cận ngang là trục hoành
Câu 4:
Cho hàm số y=f(x) liên tục trên R và có đạo hàm f’(x)=(x+2)(x-1)2018(x-2)2019. Khẳng định nào sau đây là đúng?
A. Hàm số có ba điểm cực trị
B. Hàm số nghịch biến trên khoảng (-2;2)
C. Hàm số đạt cực đại tại điểm x=1 và đạt cực tiểu tại các điểm x=±2
D. Hàm số đồng biến trên mỗi khoảng (1;2) và (2;+∞)
Câu 5:
Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức 33+552019
A. 403
B. 134
C. 136
D. 135
Câu 6:
Cho hàm số y=f(x) liên tục trên R, có bảng biến thiên như hình sau:
Trong mệnh đề sau, mệnh đề nào Sai?
A. Hàm số nghịch biến trên mỗi khoảng (-∞;-1), (2+∞)
B. Hàm số có hai điểm cực trị
C. Hàm số có giá trị lớn nhất bằng 2 và giá trị bé nhất bằng -3
D. Đồ thị hàm số có đúng một đường tiệm cận
Câu 7:
Có bao nhiêu giá trị nguyên của tham số mÎ[-2018;2019] để đồ thị hàm số y=x3-3mx+3 và đường thẳng y=3x+1 có duy nhất một điểm chung?
B. 2019
C. 4038
D. 2018
Câu 8:
Cho sinx + cosx =12 và 0 < x < π2. Tính giá trị của sinx.
A. sinx=1-76
B. sinx=1-74
C. sinx=1+76
D. sinx=1+74
Câu 9:
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân ở B, AC=a2. SA vuông góc với mặt phẳng (ABC) và (SA)=a. Gọi G là trọng tâm của tam giác SBC. Một mặt phẳng đi qua hai điểm A, G và song song với BC cắt SB, SC lần lượt tại B’ và C’. Thể tích khối chóp S.A’B’C’ bằng:
A. 2a39
B. 2a327
C. a39
D. 4a327
Câu 10:
Tìm tất cả các giá trị của tham số m để phương trình log233x+log3x+m-1=0 có đúng 2 nghiệm phân biệt thuộc khoảng (0;1).
A. 0<m<94
B. m>94
C. 0<m<14
D. m>-94
Câu 11:
Cho tam giác ABC cân tại A, góc BAC^=120° và AB=4cm. Tính thể tích khối tròn xoay lớn nhất có thể khi ta quay tam giác ABC xung quanh đường thẳng chứa một cạnh của tam giác ABC
A. 163π
B. 16π3
C. 16π3
D. 16π
Câu 12:
Cho hàm số y=f(x)=ax3+bx2+cx+d có đồ thị hàm số như hình bên dưới đây:
Có bao nhiêu giá trị nguyên của tham số m để phương trình f2(x)-(m+5)f(x)+4m+4=0 có 7 nghiệm phân biệt?
B. 2
D. 4
Câu 13:
Có bao nhiêu giá trị thực của tham số m để phương trình (x-1)(x-3)(x-m)=0 có 3 nghiệm phân biệt lập thành cấp số nhân tăng?
A. 2
B. 1
C. 4
D. 3
Câu 14:
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
Hỏi hàm số có bao nhiêu điểm cực trị?
A. Có hai điểm
B. Có bốn điểm
C. Có một điểm
D. Có ba điểm
Câu 15:
Rút gọn biểu thức P=a3-13+1a4-5. a5-2 (với a>0 và a≠1)
A. P = 1
B. P = a
C. P = 2
D. P = a2
Câu 16:
Mệnh đề nào sau đây Sai?
A. ∀x∈R,ex>0
B. ∀x∈R,ex2≥1
C. ∀x∈R,e-x<1
D. ∀x∈R,1e≤esinx≤e
Câu 17:
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB=x, AD=1. Biết rằng góc giữa đường thẳng A’C và mặt phẳng (ABB’A’) bằng 30°. Tìm giá trị lớn nhất Vmax của thể tích khối hộp ABCD.A’B’C’D’
A. Vmax=34
B. Vmax=12
C. Vmax=32
D. Vmax=334
Câu 18:
Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9
B. 6
Câu 19:
Cho biết (x-2)-13>(x-2)-16, khẳng định nào sau đây Đúng?
A. 2 < x < 3
B. 0 < x < 1
C. x > 2
D. x > 1
Câu 20:
Trong các lăng trụ sau, lăng trụ nào không nội tiếp được trong một mặt cầu?
A. Lăng trụ có đáy là hình chữ nhật
B. Lăng trụ có đáy là hình vuông
C. Lăng trụ đứng có đáy là hình thoi
D. Lăng trụ đứng có đáy là hình thang cân
Câu 21:
Trong tất cả các hình thang cân có cạnh bên bằng 2 và cạnh đáy nhỏ bằng 4, tính chu vi P của hình thang có diện tích lớn nhất
A. P=12
B. P=8
C. P=10+23
D. P=5+3
Câu 22:
Cho log8x+log4y2=5 và log8y+log4x2=7. Tìm giá trị của biểu thứcP=x-y
A. P = 64
B. P = 56
C. P = 16
D. P = 8
Câu 23:
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AD//BC), BC=2a, AB=AD=DC=a với a>0. Mặt bên SBC là tam giác đều. Gọi O là giao điểm của AC và BD. Biết SD vuông góc AC. M là một điểm thuộc đoạn OD; MD=x với x>0; M khác O và D. Mặt phẳng (α) đi qua (α) đi qua M và song song với hai đường thẳng SD và AC cắt khối chóp S.ABCD theo một thiết diện. Tìm x để diện tích thiết diện là lớn nhất?
A. a34
B. a3
C. a32
D. a
Câu 24:
Trải mặt xung quanh của một hình nón lên một mặt phẳng ta được hình quạt (xem hình bên dưới) là phần của hình tròn có bán kính bằng 3cm. Bán kính đáy r của hình nón ban đầu gần nhất với số nào dưới đây?
A. 2,25
B. 2,26
C. 2,23
D. 2,24
Câu 25:
Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại C, AB=2a, AC=a và SA vuông góc với mặt phẳng (ABC). Biết góc giữa hai mặt phẳng (SAB) và (SBC) bằng 60°. Tính thể tích khối chóp S.ABC.
A. a364
B. a322
C. a326
D. a3612
Câu 26:
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình dưới đây:
Xét các mệnh đề sau:
(I). Hàm số nghịch biến trên khoảng (0;1)
(II). Hàm số đồng biến trên khoảng (-1;2)
(III). Hàm số có ba điểm cực trị
(IV). Hàm số có giá trị lớn nhất bằng 2.
Số mệnh đề đúng trong các mệnh đề trên là:
A. 4
D. 1
Câu 27:
Tìm tất cả các giá trị của m để hàm số y=cos2x+mx đồng biến trên R.
Câu 28:
Cho a, b là các số thực thỏa mãn a>0 và a≠1 biết phương trình ax-1ax=2cos(bx) có 7 nghiệm thực phân biệt. Tìm số nghiệm thực phân biệt của phương trình a2x-2ax(cosbx+2)+1=0
A. 14
C. 7
D. 28
Câu 29:
Trong các mệnh đề sau, mệnh đề nào sai?
A. Phép vị tự là một phép đồng dạng
B. Phép đồng dạng là một phép dời hình
C. Có phép vị tự không phải là phép dời hình
D. Phép dời hình là một phép đồng dạng
Câu 30:
Tìm hàm số đồng biến trên R.
A. f(x)=3x
B. f(x)=3-x
C. f(x)=13x
D. f(x)=33x
Câu 31:
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AD, BC; G là trọng tâm của tam giác BCD. Khi đó, giao điểm của đường thẳng MG và mp (ABC) là:
A. Giao điểm của đường thẳng MG và đường thẳng AN
B. Điểm N
C. Giao điểm của đường thẳng MG và đường thẳng BC
D. Điểm A
Câu 32:
Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-6;5) sao cho hàm số f(x)=-sin2x+4cosx+mx2 không có cực trị trên đoạn -π2;π2?
A. 5
B. 4
Câu 33:
Hàm số nào dưới đây đồng biến trên R?
A. y=x3+4x2+3x-1
B. y=x4-2x2-1
C. y=13x3-12x2+3x+1
D. y=x-1x+2
Câu 34:
Cho hai số thực dương x, y thỏa mãn 2lnx+y2.5lnx+y=2ln5. Tìm giá trị lớn nhất của biểu thức sau: P=(x+1)lnx +(y+1)lny.
A. 10
C. 1
D. ln2
Câu 35:
Cho hàm số y=f(x) có đạo hàm trên (a;b). Phát biểu nào sau đây sai?
A. Hàm số y=f(x) nghịch biến trên khoảng (a;b) khi và chỉ khi f'(x)≤0, ∀x∈a;b
B. Hàm số y=f(x) nghịch biến trên khoảng (a;b) khi và chỉ khi f'(x)≤0, ∀x∈a;b và f’(x)=0 tại hữu hạn giá trị xÎ(a;b)
C. Hàm số y=f(x) nghịch biến trên khoảng (a;b) khi và chỉ khi ∀x1, x2∈a;b:x1>x2⇔fx1<fx2
D. Nếu f'(x)<0, ∀x∈a;b thì hàm số y=f(x) nghịch biến trên khoảng (a;b)
Câu 36:
Chọn ngẫu nhiên 3 số tự nhiên từ tập hợp A={1;2;3;…2019}. Tính xác suất P trong 3 số tự nhiên được chọn không có 2 số tự nhiên liên tiếp
A. P=1679057
B. P=677040679057
C. P=2017679057
D. P=2018679057
Câu 37:
Cho hình trụ có bán kính đáy R và độ dài đường sinh là l. Thể tích khối trụ là:
A. V=πr2l
B. V=πr2l3
C. V=πrl23
D. V=πrl2
Câu 38:
Cho hình trụ có chiều cao bằng bán kính đáy và bằng 4cm. Điểm A nằm trên đường tròn tâm O, điểm B nằm trên đường tròn đáy tâm O’ của hình trụ. Biết khoảng cách giữa 2 đường thẳng OO’ và AB bằng cm. Khi đó khoảng cách giữa OA’ và OB bằng
A. 233
B. 423
C. 23
D. 433
Câu 39:
Cho a>0; b>0. Tìm đẳng thức sai.
A. log2(ab)2=2log2(ab)
B. log2a+log2b=log2ab
C. log2a-log2b=log2ab
D. log2a+log2b=log2a+b
Câu 40:
Cho hàm số y=x+1x-3 có đồ thị là (C). Khẳng định nào sau đây là sai?
A. Đồ thị (C) cắt đường tiệm cận ngang của nó tại một điểm
B. Hàm số đồng biến trên khoảng (1;2)
C. Đồ thị (C) có 3 đường tiệm cận
D. Hàm số có một điểm cực trị
Câu 41:
Đồ thị hàm số sau đây là đồ thị hàm số nào?
A. y=-x4+2x2+1
B. y=-x4+2x2
C. y=x4-2x2
D. y=x4-2x2+1
Câu 42:
Tìm tập xác định D của hàm số y=(5+4x-x2)2019
A. D=(1;5)
B. D=R/-1;5
C. D=(-1;5)
D. D=-∞;-1∪5;+∞
Câu 43:
Tìm giá trị của tham số m để hàm số f(x)=x2+3x+2x2-1 khi x<-1mx+2 khi x≥-1 liên tục tại x=-1
A. -32
B. 52
C. -52
D. 32
Câu 44:
Cho A là điểm nằm trên mặt cầu (S) tâm (O), có bán kính R=6cm. I, K là 2 điểm trên đoạn OA sao cho OI=IK=KA. Các mặt phẳng (α), (b) lần lượt qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo các đường tròn có bán kính r1, r2. Tính tỉ số r1r2
A. r1r2=410
B. r1r2=5310
C. r1r2=3104
D. r1r2=3105
Câu 45:
Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy a=3. Biết tam giác A’BA có diện tích bằng 6. Thể tích tứ diện ABB’C’ bằng:
A. 33
B. 332
C. 63
D. 93
Câu 46:
Cho hàm số y=x^3 +5x+7. Giá trị lớn nhất của hàm số trên đoạn [-5;0] bằng bao nhiêu?
B. 7
C. 80
D. -143
Câu 47:
Cho biết 9^x -12^2 =0, tính giá trị biểu thức P=13-x-1-8.9x-12+19.
A. 15
B. 31
D. 22
Câu 48:
Cho hàm số fx=e13x3-32x2. Tìm mệnh đề đúng.
A. Hàm số f(x) nghịch biến trên mỗi khoảng (-∞;0) và (3;+∞)
B. Hàm số f(x) đồng biến trên mỗi khoảng (-∞;0) và (3;+∞)
C. Hàm số f(x) đồng biến trên khoảng (-∞;+∞) và (3;+∞)
D. Hàm số f(x) đồng biến trên (0;3)
Câu 49:
Cho hình lăng trụ ABC.A’B’C’, M là trung điểm của CC’. Mặt phẳng (ABM) chia khối lăng trụ thành hai khối đa diện. Gọi V1 là thể tích khối đa diện chứa đỉnh C và V2 là thể tích khối đa diện còn lại. Tính tỉ số V1V2
A. 25
B. 16
C. 12
D. 15
Câu 50:
Cho lăng trụ đứng ABC.A’B’C’ có AC=a; BC=2a; ACB=120o. Gọi M là trung điểm của BB’. Tính khoảng cách giữa hai đường thẳng AM và CC’ theo a
A. a37
B. a37
C. a3
D. a77
6115 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com