Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
32421 lượt thi 50 câu hỏi 50 phút
Câu 1:
Cho log3a+1=3. Tính 3log9a-1
A. 5
B. 3
C. 2
D. 4
Câu 2:
Tập nghiệm của phương trình 2cos2x+1=0 là
A. S=π3+k2π, -π3+k2π,k∈ℤ
B. S=2π3+k2π, -2π3+k2π,k∈ℤ
C. S=π3+kπ, -π3+kπ,k∈ℤ
D. S=π6+k2π, -π6+k2π,k∈ℤ
Câu 3:
Gọi x1, x2 là hai nghiệm nguyên dương của bất phương trình log21+x<2. Tính giá trị của biểu thức P=x1+x2
A. P = 3
B. P = 4
C. P = 5
D. P = 6
Câu 4:
Điểm biểu diễn của số phức z là M(1;2). Tìm tọa độ điểm biểu diễn của số phức w=z-2z¯
A. (-1;6)
B. (2;-3)
C. (2;1)
D. (2;3)
Câu 5:
Tìm nguyên hàm F(x) của hàm số fx=e2x biết F0=1
A. Fx=e2x
B. Fx=e2x2+12
C. Fx=2e2x-1
D. Fx=ex
Câu 6:
Tính lim8n-14n2+n+1
A. 4
B. -1
C. +∞
D. 2
Câu 7:
Cho m là một số thực. Số nghiệm của phương trình 2x4=m2-m+2 là
A. Không xác định
B. 0
C. 1
Câu 8:
Với cách biến đổi u=4x+5 thì tích phân ∫-11x4x+5dx trở thành
A. ∫-11u2u2-58du
B. ∫13uu2-58du
C. ∫13u2u2-54du
D. ∫13u2u2-58du
Câu 9:
Cho n là số nguyên dương sao cho tổng các hệ số trong khai triển của x+1n bằng 1024. Hệ số của x8 trong khai triển đó bằng
A. 28
B. 90
C. 45
D. 80
Câu 10:
Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A1;2;-1, C3;-4;1, D'0;3;5. Giả sử tọa độ điểm A'(x;y;z) thì x+y+z bằng
A. 2
B. -3
C. 7
D. 5
Câu 11:
Giá trị lớn nhất M của hàm số y=x3-3x2-1 trên đoạn 0;3 là:
A. M = 1
B. M = 5
C. M = 3
D. M = 7
Câu 12:
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng P: 3x-2y+z-14=0. Gọi H(x,y,z) là hình chiếu của O lên mặt phẳng (P) thì x+y+z bằng
A. 0
B. 2
D. 3
Câu 13:
Với các số dương a,b bất kì, đặt M=a12b35-0,3. Mệnh đề nào dưới đây là đúng?
A. log M=-185loga-950logb
B. log M=-185loga+950logb
C. log M=185loga-950logb
D. log M=185loga+950logb
Câu 14:
Hàm số nào sau đây có đồ thị phù hợp hình vẽ?
A. y=log0,6x
B. y=log6x
C. y=16x
D. y=6x
Câu 15:
Cho hàm số fx=2x2+x khi x≥0x.sin x khi x≤0. Tính ∫-π1fxdx
A. I=76+π
B. I=23+π
C. 3π-13
D. I=25+2π
Câu 16:
Cho số phức z thỏa mãn z+2i=5. Tìm giá trị lớn nhất của |z|:
A. 25
B. 2+5
C. 35
D. 4+5
Câu 17:
Người ta viết thêm 999 số thực vào giữa số 1 và số 2018 để được một cấp số cộng có 1001 số hạng. Tính số hạng thứ 501.
A. 1009
B. 20192
C. 1010
D. 20212
Câu 18:
Cho hình tròn (C), bán kính R = 2. Cắt 14 hình tròn (C) (như hình vẽ), rồi lấy 14 hình tròn đó dán kín OA và OB lại để tạo ra mặt xung quanh của một hình nón. Tính diện tích toàn phần của hình nón.
A. Stp=5π
B. Stp=5π2
C. Stp=5π8
D. Stp=5π4
Câu 19:
Cho hàm số y = f(x) xác định, liên tục trên R và có đạo hàm f'(x). Biết rằng hàm số f'(x) có đồ thị như hình vẽ bên dưới. Mệnh đề nào sau đây đúng?
A. Hàm số y=fx đồng biến trên khoảng (-2;0)
B. Hàm số y=fx nghịch biến trên khoảng 0;+∞
C. Hàm số y=fx đồng biến trên khoảng -∞;-3
D. Hàm số y=fx nghịch biến trên khoảng (-3;-2)
Câu 20:
Cho hàm số y=43x3+4x2=mx+10 (1) với m là tham số thực. Có tất cả bao nhiêu giá trị nguyên của tham số thực m lớn hơn -10 để hàm số (1) đồng biến trên khoảng -∞;0
B. 4
C. 6
D. 7
Câu 21:
Đặt (S) là diện tích hình phẳng giới hạn bởi đồ thị của hàm số y=4-x2, trục hoành và đường thẳng x=-2, x=m-2<m<2. Tìm giá trị của tham số m để S=253
C. 4
D. 1
Câu 22:
Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y=1+x+1x2-1-mx+2m có hai tiệm cận đứng?
C. 3
Câu 23:
Cho khối cầu tâm (O) bán kính 6cm. Mặt phẳng (P) cách O một khoảng x cắt khối cầu theo một hình tròn (C). Một khối nón có đỉnh thuộc mặt cầu, đáy là hình tròn (C). Biết khối nón có thể tích lớn nhất, khi đó giá trị của x là:
A. 2 cm
B. 3 cm
C. 4 cm
D. 0 cm
Câu 24:
Cho ∫12fx2+1x.dx=2. Khi đó ∫25fxdx bằng:
B. 1
C. -1
D.. 4
Câu 25:
Cho a, b là hai số thực sao cho hàm số fx=x2+ax+bx-1 khi x≠12ax-1 khi x=1liên tục trên R. Tính a - b.
C. -5
Câu 26:
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A1;2;3, B3;-2;1, C-1;4;1. Có bao nhiêu mặt phẳng qua O và cách đều ba điểm A, B, C?
A. 4 mặt phẳng.
B. 1 mặt phẳng.
C. 2 mặt phẳng.
D. Có vô số mặt phẳng.
Câu 27:
Có bao nhiêu giá trị nguyên m để hàm số y=3x+msin x+cos x+m đồng biến trên R?
D. Vô số
Câu 28:
Cho hình chóp đỉnh S có đường cao SO=6a và bán kính đáy bằng a. Biết đường tròn đáy của hình nón nội tiếp trong hình thang cân ABCD với AB//CD và AB=4CD, hãy tính theo a thể tích khối chóp S.ABCD.
A. 10a3
B. 5a3
C. 30a3
D. 15a3
Câu 29:
Tìm điểm M thuộc C: y=x3+3x2-1 sao cho qua M kẻ được duy nhất một tiếp tuyến tới (C).
A. (1;3)
B. (0;-1)
C. (-1;2)
D. (-1;1)
Câu 30:
Hình nón (N) có đường sinh bằng 2a. Thể tích lớn nhất của khối nón (N) là:
A. 8πa333
B. 16πa333
C. 8πa393
D. 16πa393
Câu 31:
Cho hàm số fx=x4+4mx3+3m+1x2+1. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số có cực tiểu mà không có cực đại. Tính tổng các phần tử của tập S.
A. 1
D. 0
Câu 32:
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng P: 2x-2y+z=0 và đường thẳng d:x+11=y2=z-1. Gọi ∆ là một đường thẳng chứa trong (P), cắt và vuông góc với d. Véc tơ u→a;1;b là một véc tơ chỉ phương của ∆. Tính tổng S = a + b.
A. S = 1
B. S = 0
C. S = 2
D. S = 4
Câu 33:
Cho hai số thực a, b thỏa mãn 3a+b+2ab+1≥5a2+b2. Tập giá trị của S=a+b là:
A. [0;2]
B. -12;0
C. -12;2
D. -12;2
Câu 34:
Thầy Hùng vay ngân hàng 100 triệu đồng, với lãi suất 1,1% /tháng. Thầy muốn hoàn nợ cho ngân hàng theo cách: sau đúng một tháng kể từ ngày vay, anh bắt đầu hoàn nợ, và những lần tiếp theo cách nhau đúng một tháng. Số tiền hoàn nợ ở mỗi lần là như nhau và trả hết nợ sau đúng 18 tháng kể từ ngày vay. Hỏi theo cách đó, số tiền lãi mà thầy Hùng ĐZ phải trả là bao nhiêu (làm tròn đến kết quả hàng nghìn)? Biết rằng, lãi suất ngân hàng không thay đổi trong suốt thời gian mà thầy vay.
A. 10773700 đồng.
B. 10773000 đồng.
C. 10774000 đồng.
D. 10773800 đồng.
Câu 35:
Cho a, x là các số thực dương và a≠1 thỏa mãn logax=logax. Tìm giá trị lớn nhất của a?
B. log2e-1
C. eln 10e
D. 10log e2
Câu 36:
Cho hình trụ (T) có hai đường tròn đáy O và O'. Một hình vuông ABCD nội tiếp trong hình trụ (trong đó các điểm A, B∈O; C,D∈O'). Biết hình vuông ABCD có diện tích bằng 400cm2. Tìm thể tích lớn nhất của khối trụ (T).
A. Vmax=800063π
B. Vmax=800039π
C. Vmax=800069π
D. Vmax=8000612π
Câu 37:
Parabol y=x22 chia hai đường tròn có tâm tại gốc tọa độ, bán kính bằng 22 thành 2 phần. Tỉ số diện tích của chúng thuộc khoảng nào trong các khoảng sau đây?
A. (0,4;0,5)
B. (0,5;0,6)
C. (0,6;0,7)
D. (0,7;0,8)
Câu 38:
Biểu đồ bên cho thấy kết quả thống kê sự tăng trưởng về số lượng của một đàn vi khuẩn; cứ sau 12 tiếng thì số lượng của một đàn vi khuẩn tăng lên gấp 2 lần. Số lượng vi khuẩn ban đầu của đàn là 250 con. Công thức nào dưới đây thể hiện sự tăng trưởng về số lượng của đàn vi khuẩn tại thời điểm t?
A. N=500.t12
B. N=500.2t2
C. N=500.2t
D. N=250.22t
Câu 39:
Cho mặt cầu (S) bán kính R=5 cm . Mặt phẳng P cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8π cm. Bốn điểm A, B, C, D thay đổi sao A, B, C cho thuộc đường tròn (C), điểm D thuộc (S) (D không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 323 cm3
B. 603 cm3
C. 203 cm3
D. 963 cm3
Câu 40:
Cho dãy số un thỏa mãn điều kiện un=un+1+6, ∀n≥2 và log2u5+log2u9+8=11. Đặt S=u1+u2+...+un. Tìm số tự nhiên n nhỏ nhất thỏa mãn Sn≥20172018
A. 2587
B. 2590
C. 2593
D. 2584
Câu 41:
Cho số phức z thỏa mãn: z-4+3i-z¯+4-3i=10 và z-3-4i nhỏ nhất. Mô đun của số phức z bằng:
A. 6
B. 7
C. 5
D. 8
Câu 42:
Cho hàm số y=fx>0 xác định, có đạo hàm trên đoạn [0;1] và thỏa mãn gx=1+2018∫0xftdt, gx=f2x. Tính ∫01gxdx
A. 10112
B. 10092
C. 20192
D. 505
Câu 43:
Có 20 tấm thẻ được đánh số từ 1 đến 20. Chọn ngẫu nhiên 5 tấm thẻ. Xác suất trong 5 tấm được chọn có 3 tấm thẻ mang số lẻ, 2 tấm thẻ mang số chẵn trong đó có ít nhất một tấm thẻ mang số chia hết cho 4 là
A. 7594
B. 25646
C. 170646
D. 175646
Câu 44:
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆: x-11=y-11=z2 và mặt phẳng P: ax+by+cz-3=0. Biết mặt phẳng (P) chứa ∆ và cách O một khoảng lớn nhất. Tổng a+b+c bằng
D. -1
Câu 45:
Cho số phức z=a+bia,b∈ℝ thỏa mãn đồng thời hai điều kiện z=z¯-1-i và biểu thức A=z-2+2i+z-3+i đạt giá trị nhỏ nhất. Giá trị của biểu thức a+b bằng
A. -1
C. -2
Câu 46:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA=a5, AB=4a, AD=a3. Điểm H nằm trên cạnh AB thỏa mãn AH=13HB, hai mặt phẳng (SHC) và (SHD) cùng vuông góc với mặt phẳng đáy. Cosin góc giữa SD và (SBC) bằng
A. 512
B. 513
C. 413
D. 33
Câu 47:
Cho phương trình 25x-m+25x+2m+1=0, m là tham số thực. Có bao nhiêu giá trị nguyên của m∈0;2018 để phương trình có nghiệm?
A. 2015
B. 2016
C. 2018
D. 2017
Câu 48:
Cho hàm số f(x) có đạo hàm dương, liên tục trên đoạn [0;2] thỏa mãn điều kiện f0=3 và 225∫02f'xf2xdx+8≤60∫02f'xfxdx. Tích phân ∫02f3xdx bằng
A. 2745
B. 406875
C. 405875
D. 27475
Câu 49:
Tại trạm xe khách có 5 hành khách đang chờ xe đón, không ai quen nhau trong đó có anh A và chị B. Khi đó có 1 chiếc xe ghé trạm đón khách, biết rằng lúc đó trên xe chỉ còn đúng 5 ghế trống, mỗi ghế trống chỉ 1 người ngồi gồm có 1 dãy ghế trống 3 chỗ và 2 chỗ ghế đơn để chở 5 người. Tham khảo hình vẽ bên các ghế trống được ghi là (1) , (2), (3), (4), (5) và 5 hành khách lên ngồi ngẫu nhiên vào 5 chỗ trống. Xác suất để anh A và chị B ngồi cạnh nhau bằng
A. 12
B. 13
C. 15
D. 14
Câu 50:
Cho x, y là các số dương xy<4y-1. Giá trị nhỏ nhất của P=62x+yx+lnx+2yy là a+lnba,b∈ℚ. Tích ab bằng
A. 115
B. 45
C. 108
D. 81
1 Đánh giá
100%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com