Cho đường tròn \(\left( {O\,;R} \right)\) có đường kính \[MN.\] Gọi đường thẳng \(d\) là tiếp tuyến của đường tròn \[\left( O \right)\] tại điểm \(N\). Lấy điểm \(E\) di động trên đường tròn \[\left( O \right)\]\((E\) không trùng với \(M\) và \(N),\) tia \[ME\] cắt đường thẳng \(d\) tại điểm \(F.\) Kẻ \[OP\] vuông góc với \[ME\] tại điểm \(P\), tia \[PO\] cắt đường thẳng \(d\) tại điểm \(Q\), tia \[FO\] cắt \[MQ\] tại điểm \(D.\)
1) Chứng minh tứ giác \[ONFP\] nội tiếp đường tròn.
2) Chứng minh \(MD \cdot DQ = DO \cdot DF.\)
3) Tìm được bao nhiêu điểm \[E\] trên đường tròn \[\left( O \right)\] để tổng \(MF + 4ME\) đạt giá trị nhỏ nhất?