Trắc nghiệm Đường kính và dây của đường tròn có đáp án (Vận dụng)

  • 830 lượt thi

  • 18 câu hỏi

  • 30 phút

Câu 1:

Cho đường tròn (O; R) có hai dây AB, CD bằng nhau và vuông góc với nhau tại I. Giả sử IA = 2cm; IB = 4cm. Tổng khoảng cách từ tâm O đến dây AB, CD là:

Xem đáp án

Đáp án D

Xét đường tròn tâm (O).

Kẻ OEAB tại E suy ra E là trung điểm của AB, kẻ OFCD tại F.

Vì dây AB = AC nên OE = OF (hai dây bằng nhau cách đều tâm)

Xét tứ giác OEIF có E^=F^=I^ = 90o nên OEIF là hình chữ nhật và OE = OF nên OEIF là hình vuông  OE = OF = EI

Mà AB = IA + IB = 6cm EB = 3cm  EI = EB – IB = 1cm nên OE = OF = 1cm

Vậy tổng khoảng cách từ tâm đến hai dây là AB, CD là 2cm


Câu 2:

Cho đường tròn (O; R) có hai dây AB, CD bằng nhau và vuông góc với nhau tại I. Giả sử IA = 6cm; IB = 3cm. Tổng khoảng cách từ tâm O đến dây AB, CD là:

Xem đáp án

Đáp án C

Xét đường tròn tâm (O)

Kẻ OEAB tại E suy ra E là trung điểm của AB, kẻ OFCD tại F.

Vì dây AB = AC nên OE = OF (hai dây bằng nhau cách đều tâm)

Xét tứ giác OEIF có E^=F^=I^ = 90o nên OEIF là hình chữ nhật và OE = OF nên OEIF là hình vuông  OE = OF = EI

Mà AB = IA + IB = 9cm  EB = 4,5cm  EI = EB – IB = 1,5cm nên OE = OF = 1,5cm

Vậy tổng khoảng cách từ tâm đến hai dây là AB, CD là 1,5 + 1,5 = 3cm


Câu 3:

Cho đường tròn (O; R) có hai dây AB, CD vuông góc với nhau ở M. Biết AB = 16cm; CD = 12cm; MC = 2cm. Khoảng cách từ tâm O đến dây AB là?

Xem đáp án

Đáp án A

Xét đường tròn tâm (O)

Kẻ OEAB tại E suy ra E là trung điểm của AB, kẻ OFCD tại F suy ra F là trung điểm CD

Xét tứ giác OEMF có E^=F^=M^=90o nên OEIF là hình chữ nhật, suy ra FM = OE

Ta có CD = 12cm  FC = 6cm mà MC = 2cm FM = FC – MC = 4cm nên OE = 4cm

Vậy khoảng cách từ tâm O đến dây AB là 4cm


Câu 4:

Cho đường tròn (O; R) có hai dây AB, CD vuông góc với nhau ở M. Biết CD = 8cm; MC = 1cm. Khoảng cách từ tâm O đến dây AB là?

Xem đáp án

Đáp án C

Kẻ OEAB tại E suy ra E là trung điểm của AB, kẻ OFCD tại F suy ra F là trung điểm CD

Xét tứ giác OEMF có E^=F^=M^=90o nên OEIF là hình chữ nhật, suy ra FM = OE

Ta có CD = 8cm  FC = 4cm mà MC = 1cm  FM = FC –MC = 4 – 1 = 3cm

nên OE = FM = 3cm

Vậy khoảng cách từ tâm O đến dây AB là 3cm


Câu 5:

Cho đường tròn (O; R) có hai dây AB, CD vuông góc với nhau ở M. Biết AB = 14cm; CD = 12cm; MC = 2cm. Bán kinh R và khoảng cách từ tâm O đến dây CD lần lượt là:

Xem đáp án

Đáp án B

Lấy E, F lần lượt là trung điểm của hai dây AB và CD. Khi đó:

OEAB; OFAC lại có FME^ = 90o nên OEMF là hình chữ nhật. Suy ra OE = MF = CF – MC = 4cm

Xét đường tròn tâm (O)

Có OE = 4cm, E là trung điểm của AB nên AE=142=7cm

Áp dụng định lý Pytago cho tam giác vuông OEA ta có

OA=AE2+OE2=65 nên R=65

Lại có OD = 65cm; FD = 6cm nên áp dụng định lý Pytago cho tam giác vuông OFD ta có OF=OD2FD2=29

Do đó khoảng cách từ tâm đến dây CD là 29cm


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Có thể bạn quan tâm

Các bài thi hot trong chương

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận