Thi Online Chuyên đề Toán 12 Bài 4: Giá trị lớn nhất và giá trị nhỏ nhất của môđun số phức có đáp án
Chuyên đề Toán 12 Bài 4: Giá trị lớn nhất và giá trị nhỏ nhất của môđun số phức có đáp án
-
347 lượt thi
-
20 câu hỏi
-
45 phút
Câu 1:
Cho số phức z thỏa mãn . Môđun lớn nhất của số phức z bằng
Chọn B

Gọi M(x;y), I(3;4) là các điểm biểu diễn lần lượt cho các số phức z; 3 + 4i. Từ giả thiết
Tập hợp các điểm M biểu diễn số phức z thỏa mãn giả thiết là đường tròn tâm I(3;4), bán kính r = 1.
Mặt khác . Mà OM đạt giá trị lớn nhất bằng OI + r, khi M là giao điểm của đường thẳng OM với đường tròn tâm I(3;4), bán kính r. Hay
Do đó, , khiCâu 2:
Trong các số phức z thỏa mãn , số phức z có môđun nhỏ nhất là
Chọn C

Đặt . Khi đó
Vậy tập hợp điểm M biểu diễn số phức z là đường thẳng d
Do đó nhỏ nhất khi M là hình chiếu của O trên d
Suy ra M(2;2) hay z = 2 + 2i
Câu 3:
Cho số phức z thỏa mãn . Giá trị nhỏ nhất của là
Chọn B
Gọi có trung điểm là O(0;0). Điểm M biểu diễn số phức z
Theo công thức trung tuyến thì
Ta có
Đẳng thức xảy ra khi
Khi z = 4i hoặc z = -4i
Câu 4:
Xét số phức z thỏa mãn . Tổng giá trị lớn nhất và giá trị nhỏ nhất của là
Chọn D
Gọi A(0;-1), B(0;1) đoạn thẳng AB có trung điểm O(0;0) . Điểm M biểu diễn số phức z
Theo công thức trung tuyến
Theo giả thiết . Đặt
Khi đó
Ta có
Do nên
Đẳng thức khi . Đẳng thức khi
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của làCâu 5:
Cho z là số phức thay đổi thỏa mãn . Trong mặt phẳng tọa độ gọi M, N là điểm biểu diễn số phức z và . Giá trị lớn nhất của diện tích tam giác OMN là
Chọn D
Đặt
Gọi lần lượt là các điểm biểu diễn các số phức
Do M, N là điểm biểu diễn số phức và nên suy ra M, N đối xứng nhau qua Ox.
Khi đó
Ta có . Theo giả thiết ta có , tập hợp điểm M thỏa điều kiện trên là elip có trục lớn ; trục bé
Nên elip có phương trình
Do đó
Đẳng thức xảy ra khiCác bài thi hot trong chương:
( 407 lượt thi )
( 600 lượt thi )
( 436 lượt thi )
( 422 lượt thi )
( 416 lượt thi )
Đánh giá trung bình
0%
0%
0%
0%
0%