Đăng nhập
Đăng ký
30279 lượt thi 50 câu hỏi 90 phút
Câu 1:
Tìm tập nghiệm phức của phương trình z2+z=0.
A. 0;-1;-i
B. 0;-1;i
C. 0;1;-i
D. 0;i;-i
Câu 2:
Cho mặt cầu (S) có tâm I và bán kính R = 5. Đường thẳng D cắt mặt cầu tại hai điểm A, B thỏa mãn AB = 4. Tính khoảng cách d từ tâm I đến đường thẳng D
A. d=21
B. d = 1
C. d = 3
D. d=17
Câu 3:
Tìm một hình không phải là hình đa diện trong các hình nào trong các hình dưới đây:
A. Hình 2
B. Hình 3
C. Hình 4
D. Hình 1
Câu 4:
Cho hai số phức z1 =1+i, z2 =2-2i. Tìm tọa độ điểm biểu diễn số phức z=z1z2
A. 12;12
B. 0;12
C. 12;0
D. 0;14
Câu 5:
Hình bên là bảng biến thiên của hàm số nào trong các hàm số sau?
A. y=x3-2x2-2
B. y=-x4+2x2+2
C. y=x4-2x2-1
D. y=-x4+2x2+1
Câu 6:
Trong không gian, cho hình chữ nhật ABCD. Kẻ các đường chéo AC, BD của hình chữ nhât. Khi quay các cạnh và các đường chéo của hình chữ nhật ABCD quanh trục AB, có bao nhiêu hình nón được tạo thành?
A. Một hình nón
B. Hai hình nón
C. Ba hình nón
D. Không có hình nón nào
Câu 7:
Hàm số y=x4+3 nghịch biến trên khoảng nào sau đây?
A. R
B. 3;+∞
C. 0;+∞
D. -∞;0
Câu 8:
Biết limx→1fx=a>1 và limx→15fxf2x+1=2. Khi đó
A. a = 1
B. a = 4
C. a = 2
D. a = 3
Câu 9:
Tìm x, biết log12x=23log12a-15log12b.
A. x=a23b15
B. x=a23b25
C. x=a32b25
D. x=a32b15
Câu 10:
Một chất điểm chuyển động theo phương trình S=t3+3mt2-(2m-1)t+1 với t tính bằng giây (S) và S tính bằng mét (m). Nếu vận tốc của chất điểm tại thời điểm t = 1s là 2m/s thì
A. m=-12
B. m = 0
C. m=12
D. m=18
Câu 11:
Hàm số nào sau đây không có giá trị nhỏ nhất?
A. y=3x2-x-1x2-x+1
B. y=3x2-x-1
C. y=cos2x-3sinx+1
D. y=x3-3x
Câu 12:
Cho hai điểm A(4;0;1), B(-2;2;3). Phương trình nào sau đây là phương trình mặt phẳng trung trực của đoạn thẳng AB?
A. 3x-y-z-1=0
B. 3x+y+z-6=0
C. 3x-y-z+1=0
D. 3x-y-z=0
Câu 13:
Cho a là số dương. Tìm kết quả sau khi rút gọn biểu thức a42:a3
A. a75
B. a56
C. a
D. a4
Câu 14:
Tìm nguyên hàm của hàm số f(x)=7x+18x.
A. ∫fxdx=7ln78.78-x+C
B. ∫fxdx=8ln78.78-x+C
C. ∫fxdx=7ln78.78x+C
D. ∫fxdx=8ln78.78x+C
Câu 15:
Cho hai đường thẳng d1:x=1-ty=tz=-t và d2:x=2t'y=1+t'z=t'. Viết phương trình mặt phẳng (P) chứa d1 và song song với d2.
A. 2x-y+3z-2=0
B. 2x-y-3z-2=0
C. 2x+y-3z-2=0
D. 2x+y+3z+2=0
Câu 16:
Cho ∫03fudu=6, ∫03gvdv=5. Tính tích phân I=∫032fx-4gxdx
A. I = -8
B. I = 32
C. I = 12
D. I = -20
Câu 17:
Cho mặt phẳng (P): x-y+2z-6=0 và điểm M(1;-1;2). Viết phương trình đường thẳng đi qua M và vuông góc với mặt phẳng (P).
A. x-11=y+12=z-2-1
B. x-12=y+11=z-2-1
C. x-11=y+1-1=z-22
D. x-1-1=y+11=z-22
Câu 18:
Cho 4x-2.6x=3.9x. Tìm I=12x27x.
A. I = 27
B. I = 6
C. I = 3
D. I = 9
Câu 19:
Hàm số y=x4+2x2+3 có bao nhiêu điểm cực trị?
A. Không có cực trị
B. Có 1 điểm cực trị
C. Có 2 điểm cực trị
D. Có vô số điểm cực trị
Câu 20:
Cho số phức z=a+bi, a,b ÎR. Tìm điều kiện của a và b để điểm biểu diễn z thuộc hình tròn tâm O bán kính R = 3 như hình vẽ bên
A. a2+b2>9
B. -3≤a≤3-3≤b≤3
C. a2+b2≤9
D. a<-3b>3
Câu 21:
Cho hàm số y=13x3-2x2+3x+1 có đồ thị (C). Tìm điểm M trên (C) mà tiếp tuyến của (C) tại M có hệ số góc nhỏ nhất
A. M-52;2
B. M2;-53
C. M2;53
D. M53;2
Câu 22:
Cho tứ diện ABCD có BCD là tam giác đều cạnh 1, AB = 2. Xét M là điểm thay đổi trên canh BC. Mặt phẳng (α) qua M song song với AB và CD lần lượt cắt các cạnh BD, AD, AC tại N, P, Q. Giá trị nhỏ nhất của biểu thức S=MP2+NQ2 bằng
A. 85
B. 349
C. 34
D. 89
Câu 23:
Cho hai điểm A(1;-2;3), B(-1;4;1) và đường thẳng d:x+21=y-2-1=z+32. Phương trình nào sau đây là phương trình đường thẳng đi qua trung điểm của đoạn thẳng AB và song song với d?
A. x1=y-1-1=z+12
B. x1=y-11=z+12
C. x1=y-1-1=z+22
D. x-11=y-1-1=z+12
Câu 24:
Tìm tọa độ tâm đối xứng của đồ thị hàm số y= 2x+1x-1.
A. (1;2)
B. (2;1)
C. (1;-1)
D. (-1;1)
Câu 25:
Cho hàm số y=x2.ex. Khẳng định nào sau đây là đúng?
A. Hàm số chỉ có một cực đại
B. Hàm số có một cực đại và một cực tiểu
C. Hàm số chỉ có một cực tiểu
D. Hàm số không có cực trị
Câu 26:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, ABC^=60°. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Gọi M và N lần lượt là trung điểm của các cạnh AB, CD. Khoảng cách giữa hai đường thẳng CM và SN bằng
A. a34
B. 3a22
C. a32
D. 3a2
Câu 27:
Viết phương trình tham số của đường thẳng d đi qua điểm M(2;3;-5) và song song với đường thẳng ∆:x=-2+2ty=3-4tz=-5t
A. x=2-2ty=3+3tz=-5
B. x=-2+2ty=3-4tz=-5-5t
C. x=-2+2ty=3-4tz=5-5t
D. x=2+2ty=3-4tz=-5-5t
Câu 28:
Một hội nghị bàn tròn có sự tham gia của phái đoàn các nước: Anh 3 người, Nga 5 người, Mĩ 2 người, Pháp 3 người, Trung Quốc 4 người. Hỏi có bao nhiêu cách sắp xếp chỗ ngồi cho mọi thành viên trên một chiếc bàn tròn sao cho những người cùng quốc tịch thì ngồi cạnh nhau?
A. 26740
B. 21350
C. 4976640
D. 32210
Câu 29:
Một đoàn tàu có 4 toa đỗ ở sân ga (mỗi toa chứa hơn 4 người). Có bốn khách bước lên tàu. Hỏi có bao nhiêu trường hợp có thể xảy ra về cách chọn toa của 4 hành khác này?
A. 256
B. 512
C. 128
D. 81
Câu 30:
Cho (C) là đồ thị của hàm số y=x2-xx-1. Khẳng định nào sau đây là sai?
A. Đường thẳng y = 0 là tiệm cận ngang của đồ thị (C).
B. Đường thẳng x = 1 là tiệm cận đứng của đồ thị (C).
C. Đường thẳng y = 1 là tiệm cận ngang của đồ thị (C).
D. Đường thẳng y = -1 là tiệm cận ngang của đồ thị (C).
Câu 31:
Số a dương để ∫0ax-x2dx đạt giá trị lớn nhất. Khẳng định nào sau đây là đúng?
A. aÎ(0;2)
B. aÎ(1;2)
C. aÎ(-2;1)
D. aÎ(2;3)
Câu 32:
Tính thể tích của vật thể nằm giữa hai mặt phẳng x = 0, x = 2 biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0≤x≤2 là một nủa hình tròn đường kính 5x2.
A. 4ᴨ
B. ᴨ
C. 3ᴨ
D. 2ᴨ
Câu 33:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, AB = a, BC = 2a, hình chiếu vuông góc của đỉnh S trên mặt đáy là trung điểm H của OA. Biết rằng đường thẳng SA tạo với mặt đáy một góc 45°. Tính thể tích V của khối chóp S.ABCD.
A. a36
B. 2a356
C. a356
D. a33
Câu 34:
Cho đường thẳng d:x-12=y+1-1=z1 và các điểm A(1;-1;2), B(2;-1;0). Tìm tọa độ điểm M thuộc đường thẳng d sao cho tam giác AMB vuông tại M.
A. (1;-1;0) hoặc 73;-53;23
B. (1;-1;0)
C. 73;-53;23
D. (1;-1;0) hoặc -73;-53;23
Câu 35:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, hình chiếu vuông góc của đỉnh S trên đáy là trung điểm O của cạnh BC. Biết rằng AB=a, AC=a3, đường thẳng SA tạo với đáy một góc 60°. Một hình nón có đỉnh là S, đường tròn đáy ngoại tiếp tam giác ABC. Gọi l là độ dài đường sinh hình nón. Tính l
A. l=2a33
B. l=a3
C. l = a
D. l = 2a
Câu 36:
Tình diện tích hình phẳng giới hạn bởi parabol y=-x2 và đường thẳng y=-x-2
A. 2
B. 92
C. 1
D. 34
Câu 37:
Tìm tọa độ giao điểm của đường thẳng d:x=1+ty=2-3tz=3+t và mặt phẳng (Oyz).
A. (1;2;3)
B. (0;5;2)
C. (0;2;3)
D. (0;-1;4)
Câu 38:
Cho hình chóp S.ABCD có đáy là hình thang vuông tại C và D, AD = 3a, BC = CD = 4a; cạnh bên SA vuông góc với đáy và SA=a3. Gọi M là điểm nằm trên cạnh AD sao cho AM = a và N là trung điểm của CD. Gọi α là số đo của góc giữa hai đường thẳng SM và BN. Khi đó cosα bằng
A. 55
B. 63
C. 23
D. 66
Câu 39:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, gọi M là trung điểm của cạnh bên SC. Mặt phẳng (P) qua AM và song song với BD lần lượt cắt các cạnh bên SB, SD tại N, Q. Đặt t=VS.ANMQVS.ABCD. Tính t
A. 13
B. 25
C. 16
D. 14
Câu 40:
Hình bên là đồ thị của hàm số y=x3-3x. Sử dụng đồ thị đã cho, tìm tất cả các giá trị thực của tham số m để bất phương trình 8sinx3-6sinx≤m nghiệm đúng với mọi xÎR.
A. m≥2
B. 0≤m≤2
C. -2≤m≤2
D. m≥-2
Câu 41:
Biết rằng khối lượng chất phóng xạ tại thời điểm t là mt=m012tT, trong đó m0 là khối lượng chất phóng xạ ban đầu (tức tại thời điểm t = 0) và T là chu kì bán rã. Biết chi kì bán rã của một chất phóng xạ là 24 giờ (1 ngày đêm). Hỏi 100 gam chất đó sẽ còn lại bao nhiêu gam sau 4 ngày đêm?
A. 5 gam
B. 258 gam
C. 254 gam
D. 4 gam
Câu 42:
Một khách sạn có 6 phòng đơn. Có 10 khách đến thuê phòng, trong đó có 6 nam và 4 nữ. Người quản lí chọn ngẫu nhiên 6 người. Tính xác suất để có 4 khác nam, 2 khách nữ.
A. 17
B. 57
C. 37
D. 47
Câu 43:
Cho đa giác đều 100 đỉnh nội tiếp một đường tròn. Số tam giác tù được tạo thành từ 3 trong 100 đỉnh của đa giác là
A. 117600
B. 78400
C. 44100
D. 58800
Câu 44:
Tìm số nghiệm của phương trình: 2.2x-2.22x+1=x-1.
B. 0
D. 3
Câu 45:
Cho điểm I(1;2;-2) và mặt phẳng (P): 2x+2y+z+5=0. Viết phương trình mặt cầu (S) có tâm I sao cho mặt phẳng (P) cắt khối cầu theo thiết diện là hình tròn có chu vi bằng 8π
A. x+12+y+22+z-22=25
B. x-12+y-22+z+22=16
C. x+12+y+22+z-22=16
D. x-12+y-22+z+22=25
Câu 46:
Cho tam giác ABC có A(1;1;2), B(-2;3;1), C(3;-1;4). Viết phương trình đường cao kẻ từ B.
A. x=-2-ty=3+tz=1+t
B. x=-2-ty=3+tz=1-t
C. x=-2+ty=3z=1-t
D. x=2-ty=3+tz=1+t
Câu 47:
Tìm tất cả các giá trị thực của tham số m để hàm sốy=1-mx4-mx2+2m-1 có đúng một cực trị
A. m∈(-∞;0] ∪ [1;+∞)
B. m∈-∞;0 ∪ 1;+∞
C. m∈(-∞;0]
D. m∈[1;-∞)
Câu 48:
Tìm phần ảo của số phức z, biết z=2+i21-2i
A. -2
B. 2
C. 2
D. -32
Câu 49:
Cho khối cầu (S) tâm I, bán kính R không đổi. Một khối trụ có chiều cao h và bán kính r thay đổi nội tiếp khối cầu. Tính chiều cao h theo R sao cho thể tích khối trụ lớn nhất.
A. h=R2
B. h=2R33
C. h=R33
D. h=R22
Câu 50:
Tìm nghiệm của bất phương trình log2ax+logax+2logax-2>1 với a > 1.
A. x>a2
B. x>a0<x<a
C. x > a
D. x>a20<x<a2
2 Đánh giá
50%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com