Đề số 14

  • 1774 lượt thi

  • 50 câu hỏi

  • 90 phút

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho A(-1;0;0), B(0;0;2), C(0;-3;0) . Bán kính mặt cầu ngoại tiếp tứ diện OABC là:

Xem đáp án

Đáp án D

Trong không gian với hệ tọa độ Oxyz, cho A(-1;0;0), B(0;0;2), C(0;-3;0) . Bán kính mặt cầu ngoại tiếp tứ diện OABC là: (ảnh 1)

Tứ diện OABC OA, OB, OC đôi một vuông góc.

Gọi M, N lần lượt là trung điểm của ABOC.

Ta có: OCOAOCOBOCOAB .

Qua M dựng đường thẳng song song với OC, qua N dựng đường thẳng song song với OM. Hai đường thẳng này cắt nhau tại I.

ΔOAB vuông tại OM  là tâm đường tròn ngoại tiếp ΔOABIO=IA=IB.

IINIO=ICIO=IA=IB=ICI

 là tâm mặt cầu ngoại tiếp O.ABC.

Ta có: OA=1,OB=2,OC=3OM=12AB=1212+22=52 R=OI=IM2+OM2=94+54=142.

 


Câu 2:

Cho cấp số cộng un  u1=11  và công sai d=4 . Hãy tính u99 .

Xem đáp án

Đáp án C

Ta có: u1=11;d=4u99=u1+991.d=11+98.4=403 .


Câu 3:

Tìm a để hàm số fx=x21x1khix1a        khix=1  liên tục tại điểm x0=1 .

Xem đáp án

Đáp án C

Hàm số y=fx  liên tục tại x=1limx1fx=f1=a

limx1x21x1=alimx1x1x+1x1=alimx1x+1=a2=a.Định nghĩa: Cho hàm số y=fx  xác định trên khoảng Kx0K . Hàm số y=fx  được gọi là hàm số liên tục tại x0  nếu limxx0fx=fx0 .


Câu 4:

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A B. Biết SAABCD,AB=BC=a,AD=2a,SA=a2 . Gọi E là trung điểm của AD. Tính bán kính mặt cầu đi qua các điểm A, B, C, D, E.

Xem đáp án

Đáp án B

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết SA vuông góc (ABCD), AB=BC=a, AD=2a, SA= căn2 a. . Gọi E là trung điểm của AD. Tính bán kính mặt cầu đi qua các điểm A, B, C, D, E. (ảnh 1)

Xét tứ giác ABCEAE//BC,AE=BC=aABCE  là hình bình hành.

Lại có ABC^=90°  (giả thiết), AC=BCABCE  là hình vuông cạnh a.

Bán kính đường tròn ngoại tiếp hình vuông ABCE Rd=a22 .

Sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp S.ABCE là: R=SA24+Rd2=2a24+2a24=a .


Câu 5:

Gọi  là nghiệm dương nhỏ nhất của phương trình 3sin2x+2sinxcosxcos2x=0 . Chọn khẳng định đúng?

Xem đáp án

Đáp án C                                    

Với cosx=0sin2x=1  không phải là nghiệm của phương trình.

Với cosx0

Phương trình tương đương với: 3sin2x+2sinxcosxcos2x=03sin2xcos2x+2sinxcosx1=03tan2x+2tanx1=0tanx=1tanx=13x=π4+kπ,kx=arctan13+kπ,k.

Nghiệm nguyên dương nhỏ nhất của phương trình là x=arctan130;π2 .


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Bài thi liên quan

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận