Đề kiểm tra Giữa kì 2 Toán 11 có đáp án (Mới nhất) (Đề 20)

  • 8865 lượt thi

  • 50 câu hỏi

  • 90 phút

Câu 1:

Tính giới hạn lim5n3n5n4

Xem đáp án

Ta có lim5n3n5n4=lim135n14.15n=1014.0=1


Câu 2:

Cho hai đường thẳng a,b phân biệt và mặt phẳng P . Mệnh đề nào sau đây sai?

Xem đáp án

Lời giải

Theo tính chất mối liên hệ giữa quan hệ song song và quan hệ vuông góc của đường thẳng và mặt phẳng thì đáp án A,C,Dđúng.

Trong đáp án B nếu a,b nằm trong mặt phẳng song song với (P) thì b  //  P. Vậy kết luận ở câu B sai.


Câu 3:

Cho hình chóp S.ABC SAABC; tam giác ABC đều cạnh a và SA=a. Tìm góc giữa SC và mặt phẳng ABC.

Xem đáp án

Lời giải

Cho hình chóp S.ABC có SA vuông góc (ABC) ; tam giác ABC đều cạnh a và SA=a. (ảnh 1)

Ta có C=SCABC (1)

Hơn nữa, theo giả thiết SAABC nên A là hình chiếu của C lên mặt phẳng (ABC0 (2) 

Từ (1) và (2) suy ra AC là hình chiếu vuông góc của SC lên mặt phẳng (ABC).

Khi đó góc giữa SC và mặt phẳng (ABC) là góc giữa SC và AC hay góc SCA^.

Tính góc SCA^

Ta có  SAABC ACABCnên SAAC.

Mặt khác,  SA=AC=a ( theo giả thiết).

Suy ra tam giác SAC vuông cân tại A, suy ra SCA^=450.


Câu 4:

Trong các giới hạn sau giới hạn nào bằng 0 ?

Xem đáp án

Lời giải

Xét đáp án A, limn+3n+2=lim1+3.1n1+2.1n=1+3.01+2.0=1.

Xét đáp án B, lim20192020n=0 20192020<1.

Xét đáp án C, lim2n=+.

Xét đáp án D, limn4=+.


Câu 5:

Cho tứ diện đều ABCD cạnh a. Tính tích vô hướng AB.AC theo .

Xem đáp án
Cho tứ diện đều ABCD cạnh a. Tính tích vô hướng vectơ AB , AC theo . (ảnh 1)

Tứ diện ABCD là tứ diện đều cạnh a nên suy ra tam giác ABC đều cạnh a.

Do đó AB.AC=AB.AC.cosAB,AC=AB.AC.cosBAC^=a.a.cos60°=12a2.


Bài thi liên quan:

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận