Dạng 5: Bài tập tự luyện có đáp án
30 người thi tuần này 4.6 2.9 K lượt thi 11 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án - Đề 10
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án - Đề 05
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án - Đề 01
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Danh sách câu hỏi:
Lời giải

Ta có AB = CD (ABCD là hình bình hành)
AB = BM (gt)
=> CD= BM
Ta có AB // CD (ABCD là hình bình hành)
=> BM// CD
Xét tứ giác BDCM có
CD=BM (cmt)
CD//BM (cmt)
=> Tứ giác BDCM là hình bình hành
=> BD//CM; BD=CM (1)
Chứng minh tương tự ta có BD//NC; BD= NC (2)
Từ (1) và (2) và theo tiên đề Ơclit suy ra N, C, M thẳng hàng và CM = CN
Do đó N đối xứng với M qua C.
Lời giải

Xét tứ giác ABCD có
AM = MC (BM là trung tuyến của tam giác ABC)
BM = MD (D đối xứng với B qua M)
=> Tứ giác ABCD là hình bình hành
=> AD//BC; AD = BC (1)
Xét tứ giác ACBE có
AN = NB (CN là trung tuyến của tam giác ABC)
NE = NC (E đối xứng với C qua N)
=> Tứ giác ACBE là hình bình hành
=> AE//BC; AE = BC (2)
Từ (1) và (2) Theo tiên đề Ơclit suy ra A, D, E thẳng hàng và AD = AE
Do đó D đối xứng với E qua A
Lời giải

Ta có E đối xứng với D qua AB
=> AB là đường trung trực của ED
=> AE= AD (1)
=> ADE cân tại A
=> AB là đường phân giác
=> (2)
Ta có F đối xứng với D qua AC
=> AC là đường trung trực của FD
=> AF= AD (3)
=> ADF cân tại A
=> AC là đường phân giác
=> (4)
Từ (1) và (3) => AE= AF (5)
Ta có
Từ (2)(4) và (6) suy ra
=> E, A, E thẳng hàng (7)
Từ (5) và (7) suy ra E đối xứng với F qua A
Lời giải

Ta có ABCD là hình bình hành
=> AD//BC
=> (2 góc so le trong)
O là giao điểm của 2 đường chéo
=> OA = OC
Xét AOE và COF có
(cmt)
OA = OC (cmt)
OA = OC (2 góc đối đỉnh)
=> AOE = COF (g.c.g)
=> OE = OF
Do đó E đối xứng với F qua O
Lời giải

Xét tứ giác AEDF có
AF//DE (DE//AB)
AE//DF (DF//AC)
=> Tứ giác AEDF là hình bình hành
Có I là trung điểm của đường chéo AD
=> I là trung điểm của đường chéo EF
Do đó E đối xứng với F qua điểm I.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
