225 Bài tập Số phức ôn thi Đại học có lời giải (P8)

36 người thi tuần này 4.0 11.2 K lượt thi 24 câu hỏi 50 phút

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Cho số phức z thỏa mãn: |z - 1 + i| = 2. Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức z là:

Lời giải

Đáp án C

Cách 1: Số phức z được biểu diễn bởi điểm M(x;y).

Số phức z1 được biểu diễn bởi điểm A(1;-1).

Em có: |z - 1 + i| = 2 => MA = 2

Vậy tập hợp điểm M là đường tròn tâm A(1;-1), bán kính R = 2 và có phương trình:

Cách 2: Đặt . Số phức z được biểu diễn bởi điểm M(x;y).

Em có:

Vậ tập hợp điểm M là đường tròn tâm I(1;-1), bán kính R = 2 và có phương trình: 

Lời giải

Đáp án D

Đặt Số phức z được biểu diễn bởi điểm

Đặt Số phức z2 được biểu diễn bởi điểm

Suy ra: |z1 - z2| = MN

Em có: 

Vậy điểm M thuộc đường tròn có tâm là điểm I(5;1) bán kính R = 3

Em có

Vậy điểm N thuộc đường thẳng d: x - y + 2 = 0.

Dễ thấy đường thẳng d và đường tròn C không cắt nhau.

Áp dụng bất đẳng thức tam giác cho bộ ba điểm I, M, N em có:

Dấu “=” bằng xảy ra khi và chỉ khi I, M, N thẳng hàng và N là hình chiếu của I trên đường thẳng d.

Vậy 

Lời giải

Đáp án D

Đặt z = a + bi

Lời giải

Đáp án A

Gọi M(x;y) là điểm biều diễn số phức z.

Từ giả thiết, ta có |z - 4 - 3i| = 5 

=> M thuộc đường tròn (C) tâm I(4;3), bán kính R =  5

Khi đó P = MA + MB với A(-1;3), B(1;-1)

Ta có

Gọi E(0;1) là trung điểm của AB 

Do đó  mà  suy ra 

 

Với C là giao điểm của đường thẳng EI với đường tròn (C)

Vậy Dấu “=”xảy ra  

Lời giải

Đáp án C

giả sử 

The giả thiết, ta có 

Suy ra 

Ta có 

Vậy chọn phần ảo là – 1 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 20

Cho các số phức z1, z2 với z1 0. Tập hợp các điểm biểu diễn số phức w = z1.z +z2 là đường tròn tâm là gốc tọa độ và bán kính bằng 1. Tập hợp các điểm biểu diễn số phức z là đường nào sau đây?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 21

Cho số phức z = a + bi(a,b ) và xét hai số phức α = z2 +(z¯)2 và β = 2.z.z¯ +i.(z - z¯). Trong các khẳng định dưới đây, khẳng định nào đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.0

1 Đánh giá

0%

100%

0%

0%

0%