Dạng 3. Chứng minh hai đường thẳng song song
29 người thi tuần này 4.6 3.5 K lượt thi 3 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 5 đề thi cuối kì 1 Toán 8 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
20 câu trắc nghiệm Toán 8 Kết nối tri thức Ôn tập chương I (Đúng sai - trả lời ngắn) có đáp án
Bộ 10 đề thi Cuối kì 1 Toán 8 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Bài toán thực tiễn có vận dụng tính chất đường phân giác của tam giác (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

ABCD là hình bình hành nên và , suy ra .
Áp dụng hệ quả của định lí Ta-lét cho và , ta được:
.
Điều này chứng tỏ đường thẳng EG cắt hai cạnh của tam giác IHF và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ, nên (theo định lí Ta-lét đảo).
Lời giải

Áp dụng hệ quả của định lí Ta-lét cho và , ta được:
(1); (2).
Nhân theo vế các đẳng thức (1) và (2), ta được:
.
Điều này chứng tỏ đường thẳng EG cắt hai cạnh của tam giác OCD và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ nên (theo định lí Ta-lét đảo).
Lời giải

Gọi I,M lần lượt là giao điểm của AE với BK và CK với AB.
Áp dụng hệ quả của định lí Ta-lét cho và , thu được:
(1).
Áp dụng hệ quả của định lí Ta-lét cho , ta được:
(2).
Từ (1) và (2) suy ra . Điều này chứng tỏ đường thẳng KI cắt hai cạnh của tam giác ADE và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ nên , hay (theo định lí Ta-lét đảo).