Đăng nhập
Đăng ký
26624 lượt thi 40 câu hỏi 40 phút
5338 lượt thi
Thi ngay
2969 lượt thi
3649 lượt thi
851 lượt thi
4307 lượt thi
2520 lượt thi
4986 lượt thi
3186 lượt thi
2673 lượt thi
2701 lượt thi
Câu 1:
Một cái nồi nấu nước người ta làm dạng hình trụ, chiều cao của nồi là 60 cm, diện tích đáy là 90πcm3. Hỏi người ta cần miếng kim loại hình chữ nhật có kích thước là bao nhiêu để làm thân nồi đó? (bỏ qua kích thước các mép gấp)
A. Chiều dài 60π cm, chiều rộng 60 cm
B. Chiều dài 900 cm, chiều rộng 60 cm
C. Chiều dài 180 cm, chiều rộng 60 cm
D. Chiều dài 30πcm, chiều rộng 60 cm
Câu 2:
Cho tứ diện NMPQ. Gọi I, J, K lần lượt là trung điểm của các cạnh MN, MP, MQ. Tỉ số thể tích VMIJKVMNPQ bằng:
Câu 3:
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có 9 cạnh bằng nhau và bằng 2a. Tính diện tích S của mặt cầu ngoại tiếp hình lăng trụ đã cho
Câu 4:
Cho hình trụ có bán kính đáy bằng a và chiều cao bằng h. Tính thể tích V của khối lăng trụ tam giác đều nội tiếp hình trụ đã cho
Câu 5:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G là trọng tâm của tam giác ABC và M là trung điểm của SC. Gọi K là giao điểm của SD với mặt phẳng (AGM). Tính tỷ số KSKD
A. 12
B. 13
C. 2
D. 3
Câu 6:
Cho tứ diện đều ABCD cạnh bằng a. Gọi M là trung điểm của CD. Tính khoảng cách giữa hai đường thẳng AC và BM
Câu 7:
Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn CD. Gọi M là trung điểm của cạnh SA, N là giao điểm của cạnh SB và mặt phẳng (MCD). Mệnh đề nào sau đây là mệnh đề đúng?
Câu 8:
Cho khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân với AB=AC=a, BAC⏜=1200, mặt phẳng (A'B'C') tạo với đáy một góc 600. Tính thể tích V của khối lăng trụ đã cho
Câu 9:
Cho tam giác ABC vuông cân tại A và điểm M nằm trong tam giác sao cho MA=1, MB=2, MC=2. Tính góc AMC⏜
Câu 10:
Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau và AC=AD=BC=BD=a, CD=2x. Tính giá trị của x sao cho hai mặt phẳng (ABC) và (ABD) vuông góc với nhau
Câu 11:
Xét khối tứ diện ABCD có cạnh AB=23 và các cạnh còn lại đều bằng x. Tìm x để thể tích khối tứ diện ABCD bằng 22
Câu 12:
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trọng tâm của các tam giác ABD, ABC và E là điểm đối xứng với điểm B qua điểm D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V. Tính V
Câu 13:
Trong tất cả các khối chóp tứ giác đều ngoại tiếp mặt cầu có bán kính bằng a, tính thể tích V của khối chóp có thể tích nhỏ nhất là
Câu 14:
Cho tứ diện ABCD có tam giác ABC là tam giác cân với góc BAC⏜=1200, AB=AC=a. Hình chiếu của D trên mặt phẳng ABC là trung điểm của BC. Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABCD biết thể tích của tứ diện ABCD là V=a316
Câu 15:
Cho hình hộp đứng ABCD.A'B'C'D' có cạnh bên AA'=h và diện tích của tam giác ABC bằng S. Thể tích của khối hộp ABCD.A'B'C'D' bằng
Câu 16:
Cho hình trụ có bán kính đáy bằng R, chiều cao bằng h. Biết rằng hình trụ đó có diện tích toàn phần gấp đôi diện tích xung quanh. Mệnh đề nào sau đây đúng?
Câu 17:
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, AB=AA'=a (tham khảo hình vẽ bên). Tính tang của góc giữa đường thẳng BC' và mặt phẳng (ABB'A').
Câu 18:
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh 2a, tâm O, SO=a (tham khảo hình vẽ bên). Khoảng cách từ O đến mặt phẳng (SCD) bằng
Câu 19:
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M, N lần lượt là trung điểm của AC và B'C' (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng MN và B’D’ bằng
Câu 20:
Người ta thả một viên billiards snooker có dạng hình cầu với bán kính nhỏ hơn 4,5 cm vào một chiếc cốc hình trụ đang chứa nước thì viên billiards đó tiếp xúc với đáy cốc và tiếp xúc với mặt nước sau khi dâng (tham khảo hình vẽ bên). Biết rằng bán kính của phần trong đáy cốc bằng 5,4 cm và chiều cao của mực nước ban đầu trong cốc bằng 4,5 cm. Bán kính của viên billiards đó bằng
Câu 21:
Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy ABC là tam giác vuông,AB=BC=a. Biết rằng góc giữa hai mặt phẳng (ACC') và (ABC') bằng 600 (tham khảo hình vẽ bên). Thể tích của khối chóp B'ACC'A' bằng
Câu 22:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M, N lần lượt là trung điểm của SC, SD (tham khảo hình vẽ bên). Tính côsin của góc giữa hai mặt phẳng (GMN) và (ABCD)
Câu 23:
Cho hình hộp xiên ABCD.A’B’C’D’ có các cạnh bằng nhau và bằng a, BAD⏜=BAA'⏜=BAD⏜=600. Khoảng cánh giữa hai đường thẳng AC’ và BD bằng
Câu 24:
Cho hình chóp tam giác đều S.ABC. Cho hình chóp tam giác đều S và có đường tròn đường tròn đáy là đường tròn nội tiếp tam giác ABC gọi là hình nón nội tiếp hình chóp S.ABC, hình nón có đỉnh S và có đường tròn đáy là đường tròn ngoại tiếp tam giác ABC gọi là hình nón ngoại tiếp hình chóp S.ABC. Tỉ số thể tích của hình nón nội tiếp và hình nón ngoại tiếp hình chóp đã cho là
B. 14
C. 13
D. 23
Câu 25:
Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông cân tại a, AB=AC=a, AA'=2a. Thể tích khối tứ diện A'BB'C là
Câu 26:
Cho tứ diện ABCD, hỏi có bao nhiêu véctơ khác véctơ 0⇀ mà mỗi véctơ có điểm đầu, điểm cuối là hai đỉnh của tứ diện ABCD
A. 4.
B. 12.
C. 10.
D. 8.
Câu 27:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ABCD là
Câu 28:
Cho hình chóp S.ABC có đáy là tam giác vuông cân cạnh bằng B, cạnh bên SA vuông góc với mặt phẳng đáy, AB=BC=a và SA=a. Góc giữa hai mặt phẳng (SAC) và (SBC) bằng
Câu 29:
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy, AB=2a và BAC⏜=600. Góc giữa đường thẳng SB và mặt phẳng (SAC) bằng
Câu 30:
Cho hình nón có đỉnh S, đáy là hình tròn tâm O, bán kính R=3cm, góc ở đỉnh của hình nón là φ=1200. Cắt hình nón bởi một mặt phẳng qua đỉnh S tạo thành tam giác đều SAB, trong đó A,B thuộc đường tròn đáy. Diện tích của tam giác SAB bằng
Câu 31:
Cho tứ diện ABCD có cạnh DA vuông góc với mặt phẳng (ABC) và AB=3cm, AC=4cm, AD=6CM, BC=5cm. Khoảng cách từ A đến mặt phẳng (BCD) bằng
Câu 32:
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a=42cm, cạnh bên SC vuông góc với đáy và SC=2cm. Gọi M,N là trung điểm của AB và BC. Góc giữa hai đường thẳng SN và CM là
Câu 33:
Cần đẽo thanh gỗ hình hộp có đáy là hình vuông thành hình trụ có cùng chiều cao. Tỉ lệ thể tích gỗ cần phải đẽo đi ít nhất (tính gần đúng) là
Câu 34:
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân tại A, AB=AC=a, AA'=a2. Thể tích khối cầu ngoại tiếp hình tứ diện AB’B’C’ là
Câu 35:
Cho hình chóp S.ABCD có đáy là hình vuông, cạnh bên SA vuông góc với đáy. Gọi M,N là trung điểm của SA,SB. Mặt phẳng MNCD chia hình chóp đã cho thành hai phần. Tỉ số thể tích hai phần S.MNCD và MNABCD là
A. 34
B. 35
C. 45
D. 1.
Câu 36:
Khối lăng trụ có chiều cao h, diện tích đáy bằng B có thể tích là:
Câu 37:
Cho khối nón có bán kính đáy r=2 chiều cao, h=3. Thể tích của khối nón là
Câu 38:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA=a6. Gọi a là góc giữa đường thẳng SB và mặt phẳng (SAC). Tính sinα ta được kết quả là:
A. 114
B. 22
C. 32
D. 15
Câu 39:
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông BA=BC=a, cạnh bên AA'=a2, M là trung điểm của BC. Khoảng cách giữa AM và B' C là:
Câu 40:
Cho hình chóp tam giác đều có cạnh đáy bằng 1 và chiều cao h=3. Diện tích mặt cầu ngoại tiếp hình chóp là:
1 Đánh giá
100%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com