Đăng nhập
Đăng ký
26635 lượt thi 40 câu hỏi 40 phút
5338 lượt thi
Thi ngay
2969 lượt thi
3649 lượt thi
851 lượt thi
4307 lượt thi
2520 lượt thi
4986 lượt thi
3186 lượt thi
2673 lượt thi
2701 lượt thi
Câu 1:
Cho hình chóp S.ABCD có đáy là hình chữ nhật. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm A. Hình chóp có mấy mặt là tam giác vuông?
A. 2.
B. 3.
C. 4.
D. 1.
Câu 2:
Cho hình chóp S.ABCD, tứ giác ABCD đáy là hình thang vuông tại A và B, S vuông góc với mặt phẳng (ABCD). Biết AB=2CD=2AD. Mệnh đề nào sau đây sai?
Câu 3:
Cho hình chóp S.ABC có SA=SB=SC và ba đường thẳng SA, SB, SC đôi một vuông góc. Gọi M là trung điểm của SB. Tìm côsin của góc α tạo bởi hai đường thẳng AM và BC.
Câu 4:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. Cạnh AC = a, BC=a5. Mặt phẳng (SAB) vuông góc mặt phẳng đáy và tam giác SAB đều. Gọi K điểm thuộc cạnh SC sao cho SC = 3SK. Tính khoảng cách giữa hai đường thẳng AC và BK theo a.
Câu 5:
Trong các hình sau, hình nào là khối đa diện ?
A. Hình 1.
B. Hình 2.
C. Hình 3.
D. Hình 4.
Câu 6:
Khối tứ diện đều, khối bát diện đều và khối hai mươi mặt đều có số đỉnh là Đ, số cạnh là C, số mặt là M thỏa mãn:
Câu 7:
Cho hình chóp tứ giác đều có tất cả các cạnh bằng nhau, đường cao của một mặt bên là a3. Thể tích V của khối chóp đó là bao nhiêu?
Câu 8:
Cho khối hộp ABC.A'B'C'D'. Gọi M là trung điểm của cạnh AB. Mặt phẳng(MB'D') chia khối hộp thành hai phần. Tính tỉ số thể tích hai phần đó.
A. 717
B. 512
C. 724
D. 517
Câu 9:
Khi tăng độ dài các cạnh của hình lập phương gấp 2 lần thì thể tích của hình lập phương sẽ tăng lên như thế nào?
A. Tăng gấp 2 lần
B. Tăng gấp 4 lần
C. Tăng gấp 6 lần
D. Tăng gấp 8 lần
Câu 10:
Người ta múc nước từ bể nước bằng một chiếc cốc có hình lập phương không có nắp vào một bình nước có hình lăng trụ tam giác đều. Biết rằng chiếc cốc có chiều dài mỗi cạnh bằng 4cm và chiếc bình có cạnh đáy bằng 10cm, chiều cao 30cm. Hỏi cần phải múc tối thiểu bao nhiêu lần để chiếc bình đầy nước?
A. 20 lần
B. 21 lần
C. 22 lần
D. 23 lần
Câu 11:
Một khối rubik có hình lập phương (mỗi mặt của rubik có 9 ô vuông) có thể tích bằng 125cm3. Hỏi tổng diện tích các mặt của khối rubik đó bằng bao nhiêu?
A. 150cm2
B. 25cm2
C. 54cm2
D. 108cm2
Câu 12:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Biết rằng SA⊥(ABCD) và SB=a3. Tính thể tích V của khối chóp S.ABCD.
Câu 13:
Cho hình chóp S.ABC có SA=SB=SC=3, AC=2. Tam giác ABC vuông cân tại B. Thể tích của khối chóp S.ABC bằng.
Câu 14:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. SA⊥(ABCD) và cạnh bên SC hợp với đáy một góc 450 . Tính thể tích V của hình chóp S.ABCD .
Câu 15:
Cho hình chóp đều S.ABCD có AC=2a, mặt bên (SBC) tạo vơi đáy góc 450. Tính thể tích V của hình chóp S.ABCD.
Câu 16:
Hình hộp đứng ABCD.A’B’C’D’ có đáy là hình vuông cạnh bên AA'=3a và đường chéo AC'=5a. Thể tích V của hình hộp đứng ABCD.A’B’C’D’ bằng bao nhiêu?
Câu 17:
Tính thể tích V của khối chóp S.ABC có độ dài các cạnh, SA=BC=5a, SB=AC=6a và SC=AB=7a
Câu 18:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt đáy, SD tạo với mặt phẳng (SAB) một góc bằng 300. Tính thể tích V của khối chóp.
Câu 19:
Một bể nước không có nắp có hình hộp chữ nhật có thể tích bằng với đáy là một hình vuông. Biết rằng nguyên vật liệu dùng để làm thành bể có đơn giá là 2 triệu đồng cho mỗi mét vuông. Hỏi giá thành nhỏ nhất cần có để làm bể gần với số nào nhất sau đây?
A. 9.500.000 đồng
B. 10.800.000 đồng
C. 8.600.000 đồng
D. 7.900.000 đồng
Câu 20:
Cho hình chóp S.ABC có đáy là tam giác vuông tại A, các cạnh AB=1, AC=2. Các tam giác SAB và SAC lần lượt vuông tại B và C. Góc giữa (SBC) và mặt phẳng đáy bằng 600. Tính thể tích của khối chóp đã cho.
Câu 21:
Cho đoạn thẳng AB cố định trong không gian và có độ dài AB = 2. Qua các điểm A và B lần lượt kẻ các đường thẳng Ax và By chéo nhau thay đổi nhưng luôn vuông góc với đoạn thẳng AB. Trên các đường thẳng đó lần lượt lấy các điểm M N, sao cho AM+2BN=3. Tìm giá trị lớn nhất của thể tích khối tứ diện ABMN ?
Câu 22:
Cho lăng trụ tam giác đều ABC.A’B’C’ có góc giữa hai mặt phẳng (A’BC) và (ABC) bằng 600 và AB=a. Khi đó thể tích của khối ABCC'B' bằng:
Câu 23:
Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB=2a; AD=a. Tam giác SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Góc giữa mặt phẳng (SBC) và (ABCD) bằng 450. Khi đó thể tích khối chóp S.ABCD là:
Câu 24:
Người ta gọt một khối lập phương bằng gỗ để lấy khối tám mặt đều nội tiếp nó (tức là khối có các đỉnh là các tâm của các mặt khối lập phương). Biết cạnh của khối lập phương bằng a. Hãy tính thể tích của khối tám mặt đều đó:
Câu 25:
Cho khối lăng trụ tam giác đều ABC.A1B1C1 có tất cả các cạnh bằng a. Gọi M là trung điểm của AA1. Thể tích khối chóp M.BCA1 là:
Câu 26:
Với một tấm bìa hình vuông, người ta cắt bỏ ở mỗi góc một tấm bìa hình vuông cạnh 12cm rồi gấp lại thành hình hộp chữ nhật không có nắp. Nếu thể tích của cái hộp đó là thì cạnh của tấm bìa có độ dài là:
A. 38cm
B. 42cm
C. 44cm
D. 36cm
Câu 27:
Cho hình chóp S.ABCD có tam giác ABC cân tại A, cạnh bên là a. Biết rằng khoảng cách từ đỉnh S tới mặt đáy (ABC) bằng hai lần đường cao kẻ từ đỉnh A của tam giác ABC đồng thời các vuông tại B và C. Tìm giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện S.ABC
Câu 28:
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng đáy. ABCD là hình vuông có đường chéo AC = 2a. Biết rằng tam giác SAC vuông cân. Tính thể tích khối chóp S.ABC?
Câu 29:
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng đáy. ABC là tam giác vuông cân tại A với SA=a, AB=AC=b. Tính thể tích khối chóp S.ABC
Câu 30:
Cho hình chóp S.ABC là tam giác vuông cân có ABC là tam giác đều cạnh a. Mặt bên (SAB) là tam giác vuông cân và nằm trong mặt phẳng vuông góc đáy. Tính thể tích khối chóp S.ABC .
Câu 31:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Tam giác SAC đều và nằm trong mặt phẳng vuông góc đáy. Tính thể tích khối chóp S.ABCD
Câu 32:
Cho hình chóp S.ABCD có đáy là hình vuông. Tam giác SAB nằm trong mặt phẳng vuông góc với đáy. Biết rằng SA=a, SB=a2, SC=a3. Tính thể tích khối chóp S.ABCD.
Câu 33:
Chóp tam giác đều S.ABC có đáy là tam giác đều với diện tích bằng 3a234. Biết rằng độ dài cạnh bên bằng a7. Tính thể tích khối chóp S.ABC.
Câu 34:
Chóp tứ giác đều S.ABCD có cạnh đáy bằng a, các mặt bên là các tam giác đều. Tính thể tích khối chóp.
Câu 35:
Chóp S.ABCD có các mặt bên cùng vuông góc với đáy. Đáy là hình chữ nhật. Biết rằng tam giác SBD đều với diện tích bằng a23. Tính thể tích khối chóp S.ABCD
Câu 36:
Tính thể tích khối tứ diện S.ABC có SA=SC=a3, SB=AC=a5, SC=AB=2a
Câu 37:
Cho tứ diện đều ABCD có thể tích bằng a364. Tính chiều cao của tứ diện.
Câu 38:
C, ở cùng một phía so với mặt phẳng (P) và vuông góc với (P) .Trên các tia đó lần lượt lấy các điểm M, N sao cho BM=2a, DN=a. Tính thể tích tứ diện ACMN ?
Câu 39:
Cho tứ diện O.ABC có các cạnh OA, OB, OC đôi một vuông góc với nhau. Biết rằng diện tích các mặt bên OAB, OBC, OCA lần lượt là 3, 4, 5. Tính thể tích của khối tứ diện O.ABC
Câu 40:
Cho tứ diện S.ABC có cạnh SA và tất cả các cạnh còn lại đều bằng 1. Tìm giá trị lớn nhất thể tích tứ diện S.ABC?
1 Đánh giá
100%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com