Dạng 1. Vận dụng tính chất của hình bình hành để chứng minh các tính chất hình học có đáp án
68 người thi tuần này 4.6 5.7 K lượt thi 4 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
Bộ 5 đề thi cuối kì 1 Toán 8 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi Cuối kì 1 Toán 8 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Bộ 5 đề thi cuối kì 1 Toán 8 Kết nối tri thức cấu trúc mới có đáp án - Đề 2
Bộ 5 đề thi cuối kì 1 Toán 8 Cánh diều cấu trúc mới có đáp án - Đề 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

a) Ta có ABCD là hình bình hành nên
AB = CD (tc hbh).
Mà E, F là trung điểm cuả AB và CD
=> AB = CF = BE = DF .
Xét tứ giác AECF, có
AEFC là hình bình hành => AF // ECLời giải
Xét có DO, AF là trung tuyến;
=> M là trọng tâm của
Xét có: BO, CE là trung tuyến,
=> N là trọng tâm của
Từ (2) và (4)
Từ (1); (3) và (5)
=> DM = BN = MN (đpcm).Lời giải

a)
E, F là trung điểm của DO và BO nên: DE = EO = OF = FB
Xét tứ giác AFCE, có:
=> AFCE là hình bình hành (dhnb)
=> AE // CF (tc hbh).Lời giải
Xét có OM // EK và E là trung điểm của DO
=> K là trung điểm của DM
=> DK = KM (1)
Xét , có OM // AK và O là trung điểm của AC
=> M là trung điểm của KC
=> CM = KM (2)
Từ (1) và (2) => DK = KM = CM
Mà KM + CM = KC
(đpcm).