Đề kiểm tra giữa kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề số 9
32 người thi tuần này 4.6 7.8 K lượt thi 5 câu hỏi 45 phút
🔥 Đề thi HOT:
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) 3(x – 5) + 2(x + 7) = x + 11
Û 3x – 15 + 2x + 14 = x + 11
Û 5x – 1 = x + 11
Û 5x – x = 11 + 1
Û 4x = 12
Û x = 3
Vậy tập nghiệm của phương trình là S = {3}.b) x2 – 4 + 3x(x + 2) = 0
Û (x – 2). (x + 2) + 3x(x + 2) = 0
Û (x + 2). [(x – 2) + 3x] = 0
Û (x + 2). (4x – 2) = 0
Vậy tập nghiệm của phương trình là .
c) x2 + 3x – 18 = 0
Û x2 – 3x + 6x – 18 = 0
Û (x2 – 3x) + (6x – 18) = 0
Û x (x – 3) + 6(x – 3) = 0
Û (x – 3)(x + 6) = 0
Vậy tập nghiệm của phương trình là S = {– 6; 3}.
d)
ĐKXĐ:
Khi đó phương trình đã cho trở thành:
=> (x – 3)(2x – 3) + (x – 5)(–2 – x) – 10 = 2(x + 2)(x – 3)
Û 2x2 – 9x + 9 – x2 + 10 + 3x – 10 = 2(x2 – x – 6)
Û x2 – 6x + 9 = 2x2 – 2x – 12
Û 2x2 – x2 – 2x + 6x – 12 – 9 = 0
Û x2 + 4x – 21 = 0
Û x2 + 7x – 3x – 21 = 0
Û (x2 + 7x) – (3x + 21) = 0
Û x(x + 7) – 3(x + 7) = 0
Û (x + 7)(x – 3) = 0
Vậy tập nghiệm của phương trình là S = {– 7; 3}.
Lời giải
Gọi x (kg) là khối lượng rau mà siêu thị đã thu mua (x > 0)
Theo dự định, khối lượng rau mỗi ngày bán được là: (kg)
Khối lượng rau đó sớm hơn dự định 3 ngày so với dự định nên số theo thực tế số lượng rau đó bán được là: 18 – 3 = 15 (kg)
Thực tế, số rau bán trong 15 ngày nên khối lượng rau mỗi ngày bán được là: (kg)
Theo đề bài, mỗi ngày siêu thị bán vượt mức 120 kg ta có phương trình:
– = 120
x = 10 800 (thỏa mãn)
Vậy khối lượng rau mà siêu thị đã thu mua là 10 800 (kg)
Lời giải
a) Thay m = 2 vào phương trình (1), ta được:
22x + 4m – 3 = 22 + x
Û 4x + 8 – 3 = 4 + x
Û 4x + 5 = 4 + x
Û 4x – x = 4 – 5
Û 3x = – 1
Û x = – .
Vậy với m = 2 thì phương trình có một nghiệm là x = – .b) Ta có: m2x + 4m – 3 = m2 + x
<=> (m2 – 1)x = m2 – 4m + 3
<=> x =
Để phương trình (1) có một nghiệm duy nhất thì:
m2 – 1 ≠ 0
Û (m + 1)(m – 1) ≠ 0
Û m ≠ ±1.
Vậy để phương trình (1) có một nghiệm duy nhất thì m ≠ ±1.c) Từ câu b ta có: x =
Để phương trình (1) có nghiệm duy nhất là số nguyên thì và m ≠ ±1.
Khi đó, m ≠ ±1 và (m + 1) Î Ư(4) = {±1; ±2; ±4}.
Ta có bảng sau:
Lời giải

a) Vì BD và CE là đường cao của DABC nên BD ^ AC, CE ^ AB.
Suy ra
Do đó .
Xét DABD và DACE có:
chung
(chứng minh trên)
Do đó DABD DACE (g.g).b) Xét DACE và DHCD có:
= 90° (vì BD ^ AC, CE ^ AB)
chung
Do đó D ACE D HCD (g.g)
Suy ra
Do đó CH. CE = CD. CA (đpcm).c) Xét DCDI và DCEK có:
= 90° (vì EK ^ AC tại K; DI ^ EC tại I)
chung
Do đó D CDI D CEK (g.g)
Suy ra
Theo câu b có: suy ra
Khi đó
Do đó KI // AH (theo định lý Ta-let đảo).
Lời giải
(b – a). (ab2 + a) − (b − a). (a2b + b) = 0
(b – a). (ab2 − a2b + a − b) = 0
(b – a). [ab. (b – a) – (b – a)] = 0
(b – a). (b – a). (ab – 1) = 0
Vì a ≠ b nên b – a ≠ 0
Do đó (b – a). (b – a). (ab – 1) = 0
ab – 1 = 0
ab = 1
a =
1566 Đánh giá
50%
40%
0%
0%
0%