🔥 Đề thi HOT:

1747 người thi tuần này

Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)

13.2 K lượt thi 19 câu hỏi
950 người thi tuần này

15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án

4.8 K lượt thi 15 câu hỏi
766 người thi tuần này

Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)

3.2 K lượt thi 18 câu hỏi
583 người thi tuần này

Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án

4.8 K lượt thi 13 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

1) Thay x = 1 vào phương trình 2x m = 1 x, ta được:

2.(1) m = 1 (1)

Û 2 m = 2

Û m = 4.   

Vậy để phương trình 2x m = 1 x nhận giá trị x = 1 là nghiệm thì m = 4.

2) Với ĐKXĐ: x ≠ 1, x ≠ 1 và x ≠ 2, ta có :

A=(1x+11x21)  .  x+1x2

=[x1(x+1)(x1)1(x+1)(x1)].  x+1x2

=x2(x+1)(x1).  x+1x2=1x1.

Vậy với x ≠ 1, x ≠ 1 và x ≠ 2 thì P=1x1.

Lời giải

Gọi số sản phẩm mà tổ sản xuất theo kế hoạch là x (sản phẩm) (x*)

Thời gian làm hết số sản phẩm theo kế hoạch là x30 (h)

Thời gian làm hết số sản phẩm theo thực tế là x27 (h)

Đổi 1 giờ 10 phút = 116 giờ = 76 giờ.

Vì tổ đã hoàn thành lô hàng chậm hơn so với dự kiến 1 giờ 10 phút, nên ta có phương trình:

x27x30=76

x9x10=72

10x909x90=31590


10x – 9x = 315

Û x = 315 (TMĐK).

Vậy số sản phẩm mà tổ sản xuất theo kế hoạch là 315 sản phẩm.

Lời giải

a) 7 + 2x = 22 – 3x

Û 2x + 3x = 22 – 7

Û 5x = 15

Û x = 3.

Vậy tập nghiệm của phương trình là S = {3}.

b) 2x3 + 6x2 = x2 + 3x

Û 2x2 (x + 3) = x(x + 3)

Û 2x2 (x + 3) – x(x + 3) = 0

Û x (x + 3)(2x – 1) = 0

Û x = 0 hoặc x + 3 = 0 hoặc 2x – 1 = 0

Û x = 0 hoặc x = – 3 hoặc x=12.

Vậy tập nghiệm của phương trình đã cho là S={0;  3;  12}.

c) x2x+23x2=2(x11)x24.

ĐK: x ≠ ± 2.

Phương trình đã cho tương đương:

(x2)2(x+2)(x2)3(x+2)(x+2)(x2)=2(x11)(x+2)(x2)

 (x – 2)2 – 3(x + 2) = 2(x – 11)

Û x2 – 4x + 4 – 3x – 6 = 2x – 22

Û x2 – 7x – 2 = 2x – 22

Û x2 – 9x + 20 = 0

Û (x2 – 4x) – (5x – 20) = 0

Û x(x – 4) – 5(x – 4) = 0

Û (x – 4)(x – 5) = 0

Û x – 4 = 0 hoặc x – 5 = 0

Û x = 4 hoặc x = 5.

Vậy tập nghiệm của phương trình đã cho là S = {4; 5}.

Lời giải

Cho hình chữ nhật ABCD có AB = 12 cm, AD = 9 cm. Gọi H là chân đường vuông góc kẻ từ A đến cạnh BD. a) Chứng minh tam giác ADH đồng dạng với tam giác DBC và AD^2 = HD.BD. b) Tính độ dài HD và HB. c) Tia phân giác của góc ADB cắt AH tại E và AB tại F. Chứng minh  EH/EA=FA/FB. (ảnh 1)

Ta có AHDB AHD^=90o.

Tứ giác ABCD là hình chữ nhật nên AD // BD.

Suy ra ADH^=DBC^ (hai góc so le trong).

Xét ∆ADH và ∆DBC có:

ADH^=DBC^ (cmt)

AHD^=DCB^=90o

Do đó ADH  DBC (g.g)

Suy ra: ADBD=DHBC mà AD = BC (vì tứ giác ABCD là hình chữ nhật)

ADBD=DHAD AD2 = HD.BD.

Vậy ADH  DBC và AD2 = HD.BD.

b) Áp dụng định lý Py-ta-go vào ∆ABD vuông tại A, ta có:

BD2 = AD2 + AB2 = 92 + 122 = 81 + 144 = 225

 BD = 15 (cm).

Ta có AD2 = HD.BD DH=AD2BD=9215=5,4  (cm)

BH = BD – DH = 15 – 5,4 = 9,6 (cm).

Vậy DH = 5,4 cm; BH = 9,6 cm.

c) Xét ∆ADH có DE là tia phân giác của ADH^.

Áp dụng tính chất đường phân giác của tam giác, ta có:

DHDA=EHEA mà AD = BC

Suy ra  DHBC=EHEA(1)

Xét ∆ADB có DF là tia phân giác của ADB^

Áp dụng tính chất đường phân giác của tam giác, ta có:

 FAFB=ADDB  (2)

ADFB=DHBC (cmt)      (3)

Từ (1), (2) và (3) suy ra: EHEA=FAFB (đpcm).

Lời giải

Ta có A = 4x – 2x2 – |x3 – x2| + 7

= – 2x2 + 4x – 2 – x2 |x – 1| + 9

= – 2(x2 – 2x + 1) – x2 |x – 1| + 9

= – 2(x – 1) 2 – x2 |x – 1| + 9

Vì (x – 1) 2 ≥ 0 nên – 2(x – 1) 2 ≤ 0.

Dấu “=” xảy ra khi x = 1.

Mặt khác, x2 ≥ 0 và |x – 1| ≥ 0 nên x2 |x – 1| ≥ 0 hay – x2 |x – 1| ≤ 0.

Dấu “=” xảy ra khi x = 1.

Do đó A ≤ 9.

Vậy giá trị lớn nhất của biểu thức A là 9 khi x = 1.

4.6

1566 Đánh giá

50%

40%

0%

0%

0%