Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 45)

  • 16298 lượt thi

  • 49 câu hỏi

  • 60 phút

Câu 1:

Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì (M khác A), kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC MB, BD MA. Gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB.

1) Chứng minh tứ giác AMBO nội tiếp.

2) Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn.

3) Chứng minh OI.OM = R2; OI.IM = IA2.

4) Chứng minh OAHB là hình thoi.

5) Chứng minh ba điểm O, H, M thẳng hàng.

6) Tìm quỹ tích của điểm H khi M di chuyển trên đường thẳng d.

Xem đáp án

Lời giải

Media VietJack

1) Ta có \(\widehat {OAM} = 90^\circ \) (do MA là tiếp tuyến của (O), A là tiếp điểm).

Suy ra ba điểm O, A, M cùng thuộc một đường tròn đường kính OM   (1)

Lại có \(\widehat {OBM} = 90^\circ \) (do MB là tiếp tuyến của (O), B là tiếp điểm).

Suy ra ba điểm O, B, M cùng thuộc một đường tròn đường kính OM   (2)

Từ (1), (2), ta được tứ giác AMBO nội tiếp đường tròn đường kính OM.

2) Đường tròn (O) có NP là dây cung.

Mà K là trung điểm của NP (giả thiết).

Suy ra OK NP tại K hay \(\widehat {OKM} = 90^\circ \).

Do đó ba điểm O, K, M cùng thuộc một đường tròn đường kính OM.

Mà từ kết quả câu 1), ta có bốn điểm A, M, B, O cùng thuộc một đường tròn đường kính OM.

Vậy năm điểm O, K, A, M, B cùng nằm trên một đường tròn đường kính OM.

3) Từ kết quả câu 1), ta có tứ giác AMBO nội tiếp đường tròn đường kính OM.

Suy ra AB là dây cung của đường tròn đường kính OM.

Do đó OM AB.

∆OAM vuông tại A có AI là đường cao.

Áp dụng hệ thức lượng trong tam giác vuông, ta có: OA2 = OI.OM và OI.IM = IA2.

OI.OM = R2 và OI.IM = IA2.

Vậy ta có điều phải chứng minh.

4) Ta có OA AM (do AM là tiếp tuyến của (O) và BD MA (giả thiết).

Suy ra OA // BD.

Chứng minh tương tự, ta được OB // AC.

Do đó tứ giác OAHB là hình bình hành.

Mà OA = OB = R.

Vậy tứ giác OAHB là hình thoi.

5) Ta có OH AB (do tứ giác OAHB là hình thoi).

Mà OM AB (theo kết quả câu 3).

Do đó OM ≡ OH.

Vậy ba điểm O, H, M thẳng hàng.

6) Do d là tiếp tuyến của đường tròn (O) nên mọi điểm đều nằm cùng một phía đối với d.

Ta có OAHB là hình thoi (kết quả câu 4).

Suy ra AH = OA = R.

Do đó khi M di động trên d thì H cũng di động nhưng luôn cách A một khoảng cố định bằng R.

Vậy quỹ tích của điểm H khi M di chuyển trên đường thẳng d là nửa đường tròn tâm A, bán kính AH = R.


Câu 2:

Giải phương trình: \[\cos x - \sqrt 3 \sin x = 2\cos 2x\].

Xem đáp án

Lời giải

Ta có \[\cos x - \sqrt 3 \sin x = 2\cos 2x\]

\( \Leftrightarrow \frac{1}{2}\cos x - \frac{{\sqrt 3 }}{2}\sin x = \cos 2x\)

\( \Leftrightarrow \cos \left( {x + \frac{\pi }{3}} \right) = \cos 2x\)

\( \Leftrightarrow \left[ \begin{array}{l}2x = x + \frac{\pi }{3} + k2\pi \\2x = - x - \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\3x = - \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\)

Vậy phương trình đã cho có nghiệm là \(\left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\).


Câu 3:

Giải phương trình: \[\sqrt 3 \sin x + \cos x = 2\cos 2x\].

Xem đáp án

Lời giải

Ta có \[\sqrt 3 \sin x + \cos x = 2\cos 2x\]

\( \Leftrightarrow \frac{{\sqrt 3 }}{2}\sin x + \frac{1}{2}\cos x = \cos 2x\)

\( \Leftrightarrow \cos \left( {x - \frac{\pi }{3}} \right) = \cos 2x\)

\( \Leftrightarrow \left[ \begin{array}{l}2x = x - \frac{\pi }{3} + k2\pi \\2x = - x + \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{3} + k2\pi \\3x = \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{3} + k2\pi \\x = \frac{\pi }{9} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\)

Vậy phương trình đã cho có nghiệm là \(\left[ \begin{array}{l}x = - \frac{\pi }{3} + k2\pi \\x = \frac{\pi }{9} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\).


Câu 4:

Mẹ có một số quả táo, mẹ cho chị \(\frac{1}{4}\) số quả táo đó, mẹ cho em \(\frac{2}{5}\) số quả táo đó. Hỏi ai được mẹ cho nhiều táo hơn?

Xem đáp án

Lời giải

Số phần số quả táo mẹ cho chị là: \(\frac{1}{4} = \frac{5}{{20}}\) (số quả táo).

Số phần số quả táo mẹ cho em là: \(\frac{2}{5} = \frac{8}{{20}}\) (số quả táo).

Vì 8 > 5 nên \(\frac{8}{{20}} > \frac{5}{{20}}\).

Suy ra \(\frac{2}{5} > \frac{1}{4}\).

Vậy mẹ cho em nhiều táo hơn.


Câu 5:

Tìm giá trị nhỏ nhất của \(C = \frac{{x + 4}}{{\sqrt x }}\) với x > 0.

Xem đáp án

Lời giải

Ta có \(C = \frac{{x + 4}}{{\sqrt x }} = \sqrt x + \frac{4}{{\sqrt x }}\).

Áp dụng bất đẳng thức Cauchy cho hai số \(\sqrt x ;\frac{4}{{\sqrt x }}\) ta được:

\(\sqrt x + \frac{4}{{\sqrt x }} \ge 2.\sqrt {\sqrt x .\frac{4}{{\sqrt x }}} = 2\sqrt 4 = 4\).

Dấu “=” xảy ra \( \Leftrightarrow \sqrt x = \frac{4}{{\sqrt x }} \Leftrightarrow x = 4\).

So với điều kiện x > 0, ta nhận x = 4.

Vậy giá trị nhỏ nhất của C bằng 4 khi và chỉ khi x = 4.


Bài thi liên quan:

Các bài thi hot trong chương:

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận