Đề thi tuyển sinh vào lớp 10 môn Toán năm 2023-2024 Cao Bằng có đáp án
4.6 0 lượt thi 5 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
Đề minh họa thi vào lớp 10 môn Toán năm 2026 TP. Hồ Chí Minh
Đề thi tuyển sinh vào lớp 10 Toán năm học 2023 - 2024 Sở GD&ĐT Hà Nội có đáp án
67 bài tập Căn thức và các phép toán căn thức có lời giải
45 bài tập Phương trình quy về phương trình bậc nhất 2 ẩn và hệ phương trình bậc nhất 2 ẩn có lời giải
63 bài tập Tỉ số lượng giác và ứng dụng có lời giải
52 bài tập Hệ Phương trình bậc nhất hai ẩn và giải hệ phương trình bậc nhất hai ẩn có lời giải
52 bài tập Hệ thức lượng trong tam giác có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) \[11 - 2\sqrt {16} = 11 - 2\sqrt {{4^2}} = 11 - 2.4 = 3\]
b) Để đồ thị hàm số \[y = 2x + b\] đi qua điểm \[M\left( {1\,;\,4} \right)\]ta có \[4 = 2\,.\,1 + b \Leftrightarrow b = 2\]
Vậy giá trị của \[b\]thỏa mãn yêu cầu bài toán là \[b = 2\].
c) Ta có \[a + b + c = 1 - 6 + 5 = 0\]
Áp dụng định lí Viet, phương trình đã cho có hai nghiệm phân biệt là: \[\left[ \begin{array}{l}{x_1} = 1\\{x_2} = 5\end{array} \right.\]
Vậy phương trình đã cho có hai nghiệm phân biệt là \[{x_1} = 1\,,\,{x_2} = 5\].
d) Giải hệ phương trình: \[\left\{ \begin{array}{l}x + y = 3\,\,\,\,\,\,\,\left( 1 \right)\\2x + y = 5\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]
Trừ vế theo vế phương trình (2) cho phương trình (1) ta được \[x = 2\].
Thay vào phương trình (1) ta có \[y = 1\].
Vậy hệ phương trình đã cho có nghiệm là \[\left( {x\,;\,y} \right) = \left( {2\,;\,1} \right)\].
Lời giải
Gọi chiều dài của mảnh vườn là \[x\,\left( {\rm{m}} \right)\]. Điều kiện \[20 < x < 90\].
Khi đó chiều rộng của mảnh vườn là \[\frac{{180}}{2} - x = 90 - x\](m).
Diện tích ban đầu của mảnh vườn là \[x\left( {90 - x} \right)\].
Diện tích của mảnh vườn sau khi tăng chiều rộng lên thêm \[20\,{\rm{m}}\]và giảm chiều dài đi \[20\,{\rm{m}}\]là \[\left( {90 - x + 20} \right)\left( {x - 20} \right) = \left( {110 - x} \right)\left( {x - 20} \right)\].
Theo giả thiết ta có phương trình: \[x\left( {90 - x} \right) = \left( {110 - x} \right)\left( {x - 20} \right)\]
\[ \Leftrightarrow 90x = 130x - 2200 \Leftrightarrow x = 55\,\](thỏa mãn điều kiện).
Vậy chiều dài và chiều rộng mảnh vườn lần lượt là \[55\,{\rm{m}}\] và \[35\,{\rm{m}}\].Lời giải
![Cho tam giác \[ABC\] vuông tại \[A\]. Biết \[AC = 8\,cm\,;\,BC = 10\,cm\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/blobid0-1766803648.png)
a) Áp dụng định lí Pita go trong \[\Delta ABC\] vuông ta có
\[AB = \sqrt {B{C^2} - A{C^2}} = \sqrt {{{10}^2} - {8^2}} = \sqrt {36} = 6\].
b) Áp dụng hệ thức về cạnh và hình chiếu ta có
\[A{C^2} = HB.HC \Rightarrow HC = \frac{{A{C^2}}}{{BC}} = \frac{{64}}{{10}} = 6,4\,\left( {{\rm{cm}}} \right)\].
Lời giải
![Cho đường tròn \(\left( O \right)\) đường kính \[AB\], trên đoạn thẳng \[OB\] lấy điểm (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/blobid1-1766803718.png)
a) Ta có \[DE \bot AC \Rightarrow \widehat {DHC} = {90^{\rm{o}}},\,\widehat {CKB} = {90^{\rm{o}}}\](góc nội tiếp chắn nửa đường tròn) \[ \Rightarrow \widehat {CKD} = {90^{\rm{o}}}\].
Suy ra \[\widehat {DHC} + \widehat {CKD} = {180^{\rm{o}}}\].
Do đó tứ giác \[DHCK\]nội tiếp đường tròn đường kính \[CD\].
b) Ta có \[HD = HE\](do tính chất của đường kính và dây cung)
Tứ giác \[ADCE\] có\[HA = HC\] và \[HD = HE\]
\[ \Rightarrow ADCE\]là hình hình hành \[ \Rightarrow CE\,{\rm{//}}\,AD\]. (1)
Mặt khác \[\widehat {ADB} = {90^{\rm{o}}}\, \Rightarrow AD\, \bot \,DB\].
Lại có \[CK\, \bot \,DB\]
Do đó \[CK\,{\rm{//}}\,AD\]. (2)
Từ (1) và (2) suy ra ba điểm \[E,\,C,\,K\] thẳng hàng .
Lời giải
Phương trình hoành độ giao điểm của parabol \[\left( P \right)\,\]và đường thẳng \[\left( d \right)\,\]là
\[{x^2} = 2mx - {m^2} + 1 \Leftrightarrow {x^2} - 2mx + {m^2} - 1 = 0\,\,\,\,\left( * \right)\]
a) Ta có \[\Delta = {m^2} - 1\, \cdot \left( {{m^2} - 1} \right) = 1 > 0,\,\forall m\]. Phương trình (*) luôn có 2 nghiệm phân biệt nên đường thẳng \[\left( d \right)\,\]luôn cắt parabol \[\left( P \right)\,\]tại hai điểm phân biệt.
b) Theo định lí Viet ta có \[\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1} \cdot {x_2} = {m^2} - 1\end{array} \right.\] (1).
Điều kiện \[{x_1} \ne 0,\,\,{x_2} \ne 0\]. Suy ra \[{m^2} - 1 \ne 0 \Leftrightarrow m \ne \pm 1\] .
Theo giả thiết \[\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{{ - 2}}{{{x_1}{x_2}}} + 1 \Leftrightarrow \frac{{{x_1} + {x_2}}}{{{x_1}{x_2}}} = \frac{{ - 2 + {x_1}{x_2}}}{{{x_1}{x_2}}}\]\[ \Leftrightarrow {x_1} + \,{x_2} = - 2 + {x_1}{x_2}\] (2)
Thay (1) vào (2) ta được: \[2m = - 2 + {m^2} - 1 \Leftrightarrow {m^2} - 2m - 3 = 0\]\[ \Leftrightarrow \left[ \begin{array}{l}m = - 1\\m = 3\end{array} \right.\]
Kết hợp với điều kiện ta thấy \[m = 3\] thỏa mãn.